
Rodent Filemanager

User's Guide

September 22, 2011

Abstract

In the unix world, �les are not just ordinary �les. Shared memory,

devices, processes, and practically everything in the unix environment

has its place in the �le structure. The goal of Rodent Filemanager is

to provide a small, fast and powerful �lemanager capable of handling

this multifacet environment. And the chosen means of doing this in the

new multicore environment is with multiple light weight processes running

simultaneously in a coordinated fashion.

Contents

1 History 4

2 Rodent Design 5
2.1 Structural layout . 5
2.2 Geometric layout . 6

3 Basics 8
3.1 Mouse click . 8
3.2 Drag and drop . 8
3.3 Cut and paste . 8
3.4 Fgr . 8
3.5 Application association . 9
3.6 Selection . 9
3.7 Keyboard . 9
3.8 Lp-terminal command history 9
3.9 Content emblems . 10
3.10 Preview popups . 10
3.11 Touch . 10
3.12 Di� . 10
3.13 Icon theme . 10
3.14 Translations . 10

1

4 Main application 11
4.1 rodent . 11
4.2 rodent-forked . 11
4.3 rodent-desk . 12
4.4 Fstab plugin (rodent-fstab) . 14
4.5 Ps plugin (rodent-ps) . 15
4.6 Dotdesktop plugin (rodent-dotdesktop) 18

4.6.1 Navigation mode . 18
4.6.2 Popup menu . 20

4.7 Non root plugins . 22
4.7.1 Properties plugin . 22
4.7.2 Icons plugin . 22
4.7.3 Mime plugin . 23
4.7.4 Combobox module . 23
4.7.5 Find module . 23
4.7.6 Settings module . 23

5 Popup menus 23
5.1 Popup over void space . 23
5.2 Popup over icon space . 28

6 Con�guration 29
6.1 General . 29
6.2 Desktop . 31
6.3 Copy/Move options . 31
6.4 Remove/Shred . 32
6.5 Advanced Options . 33

7 Helper applications 33
7.1 Internal . 33

7.1.1 Rodent-fgr and fgr: File content search command 33
7.1.2 Rodent-di� . 35
7.1.3 Rodent-mime . 35
7.1.4 Rodent-root . 35
7.1.5 Rodent icon theme . 37

7.2 External . 37
7.2.1 cp: Copy �les and directories 38
7.2.2 rm: Remove �les or directories 43
7.2.3 ln: Make links between �les 45
7.2.4 touch: Change �le timestamps 48
7.2.5 sudo: execute a command as another user 50
7.2.6 libmagic . 51
7.2.7 ps: report a snapshot of the current processes 52
7.2.8 di� . 53
7.2.9 bash: GNU Bourne-Again SHell 54
7.2.10 shred: Remove �les more securely 54

2

7.2.11 ghostscript: PostScript and PDF language interpreter and
pre- viewer . 57

7.3 Apendix . 57
7.3.1 Backup options . 57
7.3.2 File permissions . 58
7.3.3 Umask and Protection . 62
7.3.4 Conditional Executability 63
7.3.5 Making Multiple Changes 63
7.3.6 Setting Permissions . 63
7.3.7 Symbolic links . 65
7.3.8 Common options . 65
7.3.9 Target directory . 66
7.3.10 Trailing slashes . 67
7.3.11 Treating `/' specially . 67
7.3.12 Specifying the Time Zone with `TZ' 68
7.3.13 Environment Variables 70

8 Modules 70

3

1 History

The Xfce Desktop Environment started as a CDE clone using the XForms toolkit
(hence the XF and ce in XFce). CDE was the "Common Desktop Environment"
developed by HP, Sun, Digital and other big box players for their top notch
workstations. De�nitely cool. De�nitely not for dummies.

CDE had a neat �lemanager called dt�le, but this was not open source, so
Xfce used a variation of Rasca's "Xtree" called "Xftree" as a �lemanager.

X�m history began when Xfce was running on the Gimp Toolkit (GTK) by
extending Xftree's functionality with the "glob" search engine (now "fgr"), the
samba network browser "Xfsamba", the di�erences viewer "Xfdi�" and a set of
dt�le icons, among other things.

Then came the migration to GTK-2. For this Xftree was rewritten as X�m,
retaining all the previous functionality and adding more. The dt�le icon set
was replaced by Francois' Rodent icon theme. To distinguish X�m as a part of
Xfce, the �rst release was tagged 4.0.

Then came 4.2 and the love/hate story started. Those new to Xfce could
not understand why X�m had such a steep learning curve, while those familiar
to Xftree expected the nerdy behaviour they had become used to.

Anyways, it was decided that Xfce would no longer distribute a �leman-
ager: this way users could choose the new Thunar �lemanager (which, as an
independent software, would no longer follow the Xfce version numbers).

Cut loose of the xfce umbilical, x�m was adopted by foo-projects, hosted at
Stockholm University. The x�m.org domain was assigned and the web page at
http://x�m.org/ was put on the line. The next release of X�m would no longer
follow the current Xfce version numbers, but for consistency would not be rolled
back.

X�m-4.5.0, which featured a new user interface (although the old nerdy
treeview was still available) was released on 2006-05-24. This remained stable
until 2010, when 4.6.0 was released1. 4.5.0 had 13500 downloads according to
sourceforge data, and the main user group was in Germany, followed by the
United States, Russia, China and Poland.

4.6.0 was to ve a new thread-safe, thread-based design (code named "Ro-
dent", for Francois' icon theme) and required a rewrite of the X�m code. To
accomplish this, several goals were set forth:

• Thread based, thread safe design

• Cleaner and simpler build process

• Faster and more powerful

• Unnerdi�cation (this a bit surreal, coming from a nerd)

• Command line functionality (lp-terminal)

1Work on 4.6.0 began in early 2006, when Intel gave me a multicore laptop to start doing
multicore software (thanks, Intel).

4

As part of the unnerdi�cation, the old treeview is gone. To keep it simple, the
graphic part is as simple as the concept developed by the guys at Palo Alto
(you know, the guys who �rst came up with the idea of a mouse �a species of
rodent� for the computer). Nothing more. Simple uncluttered graphics. Along
side this graphic part is the keyboard. A place to issue commands. Graphic,
but not for dummies.

The �rst release of Rodent Alpha, (aka x�m-4.6.0) was in November 2010, at
a conference at the University of Sonora. The second release was stable enough
to be tagged beta software. Rodent Beta (aka x�m-4.6.2) released in April 2011.
The third release, Rodent Beta release 2 (aka x�m-4.6.4) was released in the
last days of May. The �rst non beta release is Rodent Gamma.

Rodent Gamma is faster than Beta, has over 95% translation for the main
non-English languages in the world, and boasts new features that make this
�lemanager capable of handling heavy loads. Visit the sourceforge site2 for
download details.

2 Rodent Design

2.1 Structural layout

The Rodent Filemanager source �le is extremely simple, consisting of less than
500 lines of code. Yet this expands to more than 40,000 lines of code on a binary
tree design modelled on Hegel's comprehensive philosophical framework3. If you
are not familiar with this manner of thought, fret not, the overall method should
become clear as you read on.

On the highest level, Rodent Filemanager is the synthesis of:

• the main application,

� popup menus

� lp-terminal area

• helper programs:

� internal,

� external.

The main application is divided into two mayor areas, each made up from two
components. The nature of the function determines where the code will be
contained.

• Dynamic load libraries

2http://sourceforge.net/projects/x�m/
3Hegel's account of reality revolutionized European philosophy. In particular, he developed

the concept that mind or spirit manifested itself in a set of contradictions and oppositions
that ultimately integrated and united, without eliminating either pole or reducing one to the
other (http://en.wikipedia.org/wiki/Georg_Wilhelm_Friedrich_Hegel).

5

� Internal

∗ Rfm library (librfm: low level library, where functions are names-
paced with the rfm_ pre�x);

∗ Rodent library (librodent : high level library, where functions are
namespaced with the rodent_ pre�x)

� External

∗ Gtk+

∗ libmagic

• Modules (or plugins).

� functional plugins (which provide extra �lemanager functionality)

� root level plugins (which provide alternate �lestructures)

2.2 Geometric layout

The Rodent �lemanager physical layout is composed of the icon and lp-terminal
areas.

The �rst may have icons or empty space. The popup menu is context sen-
sitive, allowing for two basic menus. The icon area is meant to be as simple
as possible, in the manner of the concept developed by the guys at Palo Alto.
Simple uncluttered graphics (see �gure 1). As such, toolbar and �le menu
functionality is fully handled by popup menus which are only visible when sum-
moned. Display real estate is too valuable to waste on alternate methods to do
the same thing.

The lp-terminal area is also simple: it is not a video terminal emulator, but
a line printer terminal emulator (hence the lp-terminal nomenclature), such as
those used as consoles in several robust computing systems of yore (see �gure
2). The lp-terminal area will execute all command in background, and has two
types of autocompletion, history4 and bash5, and two text areas, one for input
and one for output. Thus it is handy to issue commands like �make� and follow
the output which is streamed to stdout/stderr6, but is not adequate to edit a
�le, for example. There are better graphic tools for the latter.

Rodent �lemanager geometric layout can be summarized as follows:

• icon area

� icon popup menu

� empty space popup menu

• lp-terminal area

4summoned with the CTRL+TAB key combination
5summoned with the TAB key
6Output to stderr will be colored red, while that to stdout will be black.

6

Figure 1: First computer with icons and pointer device

� output text area

∗ stdout (black font)

∗ stderr (red font)

� Input text area

∗ history autocompletion

∗ bash autocompletion

7

Figure 2: Lp terminal

3 Basics

3.1 Mouse click

Items are activated with a single click. This is a con�gurable option.

3.2 Drag and drop

The default action for drag and drop is to move the items. This is a con�gurable
option. Holding down the CONTROL key while releasing the mouse button will
do a copy. Holding down the SHIFT key will do a move. Holding down both
the CONTROL and SHIFT keys will do a symlink. Symlinks constructed in
this manner will be done so in a relative �le path, not an absolute path.

3.3 Cut and paste

The Rodent pasteboard operates on the localhost. Windows from remote hosts
will have a di�erent pasteboard. This change of behavior from previous X-
pasteboard in version <= 4.5.0 is required for compatibility with the threaded
multicore nature of Rodent.

3.4 Fgr

fgr is the command line search tool used by Rodent and Rodent-fgr. The
command line tool may be used directly from a terminal or the lp-terminal
input line. The GNU grep command (or similar BSD tool) must be installed

8

for this application to search for �le content. There is no need for the �nd

command to be present.

3.5 Application association

To have Rodent associate an application to a particular �le mimetype, use
the �Open with� element of the popup menu. The selected application will
be the default application until the �Open with� element is used again. Other
applications associated to the particular mimetype will always appear in the
popup menu as individual items.

3.6 Selection

Items may be selected by clicking with the mouse button while holding down
the SHIFT or CONTROL key in the conventional manner. SHIFT will select
all items between previously selected items, while CONTROL will select if un-
selected and unselect if previously selected. All other items will retain their
selection status. A rubber band box may also be used for selecting multiple
items by holding down the mouse button while moving the mouse.

3.7 Keyboard

Keyboard input is processed by the lpterminal. Bash autocompletion is available
with the TAB key. History autocompletion is available with CONTROL+TAB
key.

3.8 Lp-terminal command history

To access the command history of the lp-terminal you may use the following
commands in the lp-terminal:

? Show help about options

! Show History

!n Reference Number (Command Line) n.

!STRING Complete Match STRING.

!?STRING Anywhere STRING.

STRING<CTRL+TAB> Completion mode: Command Line.

STRING<TAB> Completion mode: bash.

!! Clear History (Current)

!!! Clear History (Disk)

All lp-terminal commands will show stdout output in black and stderr output
in red in the lp-terminal area. For each command (executed in background) a
�exec� button appears next to the lp-terminal input area and which is linked
to rodent-ps. This allows the user to view the process in question and send
arbitrary signals for control. If the ps-module plugin is not installed, then a
dialog which allows for user termination of the process will appear.

9

3.9 Content emblems

For each folder, a small icon indicating the prevailing mimetype for the �les
contained in that folder will appear in the upper right hand corner.

3.10 Preview popups

For image, pdf, postscript and text �les, placing the mouse on top of the icon
will trigger a popup window which will show the content of the �le in question in
a size big enough to actually see what the �le is about. This option is especially
useful for sifting through �les with non-descriptive names without having to
open each one. To make this as fast as possible, move the mouse over several
�les before halting over each one. This will allow Rodent to do the preview
work in the background while the user is examining the output produced. To
disable the preview and to show a normal tip with �le information, press mouse
button 2 (the middle button) while moving the mouse on top of the icon. To
disable previews for all �les in the current directory, toggle the �show previews�
value in the popup menu. To disable all popup windows for all directories, use
the settings dialog con�guration tool.

3.11 Touch

Rodent provides a graphic front end to GNU touch program. This can be
launched from the popup menu on a single or multiple selected items.

3.12 Di�

Rodent also includes a front end to GNU di� command, allowing a side by side
comparison of �les and patch generation in a variety of formats.

3.13 Icon theme

Rodent includes the updated Rodent icon theme which may be installed as the
default icon theme for desktop environments such as Gnome or Kde.

3.14 Translations

Rodent includes translations for 126 languages7.

7af, am, an, ar, as, ast, az, be, be@latin, bg, bn, br, bs, ca, ca@valencia, crh, cs, csb, cy, da,
de, dv, dz, el, en_CA, en_GB, eo, es, et, eu, fa, �, fr, fur, fy, ga, gl, gn, gu, gv, ha, he, hi, hne,
hr, hsb, hu, hy, ia, id, ig, io, is, it, ja, ka, kg, kk, km, kn, ko, ku, ky, la, lb, li, lt, lv, mai, mg,
mi, mk, ml, mn, mr, ms, nb, nds, ne, nl, nn, no, nso, oc, or, pa, pl, ps, pt, pt_BR, pt_PT,
ro, ru, rw, se, si, sk, sl, sq, sr, sr@ije, sr@ijekavian, sr@ijekavianlatin, sr@latin, sv, ta, te, tg,
th, tk, tr, ug, uk, ur, uz, uz@cyrillic, vi, wa, xh, yi, yo, zh, zh_CN, zh_HK, zh_TW.Big5,
zh_TW, zu.

10

Figure 3: Rodent iconview with Rodent icon theme showing a pdf �le preview
pop up

4 Main application

The rodent �lemanager has di�erent modes depending on how it is summoned
from the command line.

4.1 rodent

This is the iconview �lemanager. If the startup path is not speci�ed on the
command line, it will default to the user's home directory. Figure 3 shows the
Rodent iconview when the mouse is held over a pdf �le. In this case, a popup
window will show the user the �rst page of the document. This makes sense
for users who have many pdf �les and wish to �nd one in particular without
opening each one one..

4.2 rodent-forked

This is the same iconview �lemanager as summoned by the rodent executable,
but if the startup path is not speci�ed on the command line, the program will
default to the rodent root level (�gure 7), where icons for the root �le system,
the user's home directory, and all installed root level plugins are displayed.
Furthermore, the application will execute in background.

11

Figure 4: Rodent root level

4.3 rodent-desk

This is the �xed window on the root background. Desktop background color can
be customized by the user, as well as the use of an image �le in many di�erent
formats, such as jpg, gif, png. Only the icons which �t on the desktop will be
displayed. As such, if the number of icons exceeds the �t capacity, some will
not be shown. In �gure we show the Rodent desktop. In this �gure the selected
icon theme is the default GTK desktop icons. If the icons plugin happens to be
removed from the system, Rodent will fall back to a limited set of GTK stock
icons, which may be a subset of the GTK desktop icons if the program is being
executed within a desktop environment.

The deskview, as any other iconview, can be de�ned in navegation mode,
allowing the user to cruise the �le system or root plugins as if in an ordinary icon-
view (this feature is disabled by default, and can be enabled at Personal_settings
-> Desktop -> Navegation_mode).

Other characteristics that can be de�ned for the deskview, shown in �gure 6,
are:

• Show the desktop on executing any Rodent instance (default: yes)

• Show lp-terminal text output window with buttons (default: no)

• Use navegation mode (default: no)

• De�ne background image (default: none)

• De�ne background color (default: #283F3F)

• De�ne top margin where no icons are placed (default: 20 pixels)

• De�ne bottom margin where no icons are placed (default: 40 pixels)

12

Figure 5: Rodent desktop with gtk stock icons on Ubuntu 9.10

Figure 6: Rodent-desk user settings dialog

13

Figure 7: Rodent-fstab

• De�ne right margin where no icons are placed (default: 5 pixels)

• De�ne left margin where no icons are placed (default: 5 pixels)

4.4 Fstab plugin (rodent-fstab)

This executable will directly open the Mount Points plugin. From this plugin,
mount points and devices de�ned in the system /etc/fstab �le may be mounted
or unmounted. Partitions detected in /proc/partitions will also be available
for mount or unmount operations. Furthermore, any mount point detected in
/etc/mtab will also be available (�gure 7). Icons for mounted volumes are
enhanced with a green ball emblem, while unmounted items have a red ball
emblem.

When a usb device is inserted, the detected partition will automatically
appear in this window, allowing the user to mount and unmount the device
at will. If the fstab con�guration do not allow users to mount or unmount a
speci�ed volume, Rodent will try to issue the command speci�ed by the user
with the sudo helper application (section 7.2.5).

When this module is installed, an additional menu element is available in
the Rodent icon popup menu which allows the user to mount volumes listed

14

Figure 8: Popup menu mount option

in /etc/fstab or unmount volumes listed in /etc/mtab (�gure 8). The menu
element will appear automatically if the action is applicable.

4.5 Ps plugin (rodent-ps)

The rodent-ps executable opens the System Processes plugin (�gure 9). This
plugin shows running processes in the system. The default is to show the parent-
child relationship between processes in a �le system manner. This behavior may
be changed by means of the pop up menu in empty space (�gure 10). The user
may also select to view all sytem processes or only focus on own processes.
Processes may be suspended, continued, terminated or killed by means of the
icon area popup menu (�gure 11). The complete set of signals that can be issued
to any process are:

• STOP

• CONT

• INT

• HUP

• TERM

• KILL

• USR1

15

Figure 9: Rodent-ps

• USR2

• SEGV

The process tree and process information may also be obtained by means of the
popup menu. And user processes may be reniced as well.

Furthermore, the window which appears when the mouse hovers over the
icon shows further information about the process (�gure 12). Whenever the
stop button is pressed for any Rodent controlled background process, rodent-ps
will open at the exact level where the process is running, allowing total control
over the process. This is a feature available in versions greater than or equal
to 4.6.6. The default behavior in previous versions was to send a TERM signal,
and if that failed, a KILL signal. The old behavior for the stop button is now
used only if the ps-module is not installed (see ./configure --help for build
con�guration options).

The Rodent backend helper program, GNU ps is a contribution of

• Branko Lankester <lankeste@fwi.uva.nl>,

• Michael K. Johnson <johnsonm@redhat.com>,

• Michael Shields <mjshield@nyx.cs.du.edu>,

16

Figure 10: Rodent-ps: empty area popup menu

Figure 11: Rodent-ps: icon area popup menu

17

Figure 12: Rodent-ps: tip window

• Charles Blake <cblake@bbn.com>,

• Albert Cahalan <albert@users.sf.net> and

• David Mossberger-Tang

for which we express our gratitude.

4.6 Dotdesktop plugin (rodent-dotdesktop)

The Rodent-dotdesktop executable summons the dotdesktop module in naviga-
tion mode.

4.6.1 Navigation mode

This module will create a categories window (�gure 13), where each category will
contain dot desktop �les (launchers) for installed programs which have classi�ed
themselves accordingly.

The categories considered by rodent-dotdesktop are all the categories present
in installed dot desktop �les.

If any of the categories is empty, then the category will not appear. Each
launcher icon can execute the referred program in two ways. The simplest is
a simple double click (or <return> on a selected icon). The second method
applies for drag and drop. For instance, if the user desires to open several �les
with a dot desktop application, all that has to be done is select the icons to
be opened and drag them and drop them on the launcher icon. Since each
launcher is simply a �le, the launcher itself may be dragged and dropped on
any �lesystem folder or even the desktop folder. The behavior of the icon will
be the same as within the Rodent-dotdestop view with one exception. When
dot desktop �les are located outside the rodent-dotdesktop view, they are also
recognized as text �les so the user can view and modify them.

18

Figure 13: Rodent-dotdesktop

19

Icon customization The icon which is shown on the dot desktop �le is spec-
i�ed within the dot desktop �le itself. If this speci�cation is not an ab-
solute path, then the user may customize the icon to be shown by cre-
ating the desired icon, with the same name, and placing the icon in the
~/.local/share/pixmaps directory. This icon will override the default
icon.

Mime_information Dot desktop �les also have pertinent mime information.
This is not used in Rodent Gamma, but will be in the near future.

4.6.2 Popup menu

Furthermore, if the dotdesktop module is installed, the empty space popup menu
in Rodent will have the extra submenu Applications with a small mouse icon. In
this submenu the launchers may be executed directly8 as from a GNOME, KDE
or XFCE panel menu (see �gure 14). The advantage of having this Applications
popup where you need it and when you need it is less stressful to the impatient
mind.

The popup has the following �xed categories, following the Gnome layout,
although this layout may vary in the future if such modi�cations are deemed
convenient.

• Accessories

• Graphics applications

• System Tools

• Internet and Network

• Games and amusements

• O�ce Applications

• Tools for software development

• Audio and Video

• Personal preferences

The amount of applications which will be available depends on the applications
currently installed. Any new software which is installed and which provides dot
desktop �le will be recognized immediately.

8Categories Core, Qt, KDE, GTK and GNOME are not present in the popup submenu
because these categories are too large. Nonetheless, they are always available in the icon
navigation mode.

20

Figure 14: Rodent-dotdesktop application popup submenu

21

Figure 15: Properties plugin dialog

4.7 Non root plugins

Non root plugins add extra functionality to Rodent �lemanager, and are only
loaded on a need to use basis. Furthermore, the operating system does not
reserve memory for modules (in contrast to dynamic load libraries) until load
time. This helps keep Rodent small. These plugins may be used by other
applications. The API and programmer's guide will be available with Rodent
Delta.

4.7.1 Properties plugin

This plugin provides the properties dialog which is summoned from the popup
menu. It is a front end for chown, chmod and chgrp. If the user is not authorized
to apply such commands, then it will try to use sudo, allowing the privileged
user to issue such commands without leaving the �lemanager environment. See
�gure 15.

4.7.2 Icons plugin

This plugin provides access to the Rodent icon theme and the xdg spec named
icons. If this module is not installed, Rodent will fall back to a very basic GTK
subset of icons. Use this if you do not care about looks but want a �lemanager
that is fast as a hurricane. The icons plugin requires the mime plugin (section
) to load.

22

4.7.3 Mime plugin

This plugin is in charge of resolving mimetypes for �les and associating applica-
tions. Eliminating this plugin will impede the icons plugin from loading. If the
dotdesktop plugin is installed, this plugin will be enriched by the associations
between mimetypes and applications harvested from installed applications.

The plugin uses both the freedesktop mimetype de�nition as well as those
de�ned by the libmagic library (used by the file application). Other mime-
types de�ned by googlecode and /etc/mime.types is also used. The con-
�guration �le which installs the default applications on a system wide ba-
sis is located at rodent/libs/rfm/mime/mime-module.xml and is installed to
$PREFIX/share/rfm-Gamma/.

Applications with are associated by the user by means of the �Open with� di-
alog are saved in a simple text format at $HOME/.config/rfm-Gamma/user-applications.

4.7.4 Combobox module

This module creates an extended combo box with historic and bash completion.
If the module is not installed, dialogs which Rodent presents with input boxes
will consist of simple entry boxes without historic or bash completion.

4.7.5 Find module

This module takes care of building and presenting the graphic front end to
the fgr command. The module is used by Rodent �lemanager as well as the
standalone front end rodent-fgr. See �gure 22.

4.7.6 Settings module

This plugin takes care of managing the shared memory and comunicating con-
�guration changes between applications. It also handles the settings dialog
window.

5 Popup menus

The popup menu is context sensitive. There is a popup menu over void space
and another over an icon space.

5.1 Popup over void space

Figure 16 shows what the popup menu over void space looks like. The increase
and decrease menu items are only shown in the rodent-desk version because the
iconview has a dedicated scale widget to provide this functionality.

The structure of the menu is as follows:

• Places (Bookmarks) Submenu [This is a submenu which allows the user
to quickly navigate to prede�ned places or plugins. It also includes user

23

Figure 16: Popup over void space

24

de�ned bookmarks. These are the normal bookmarks used by GTK by
default.]

� User bookmark 1 [Go to this bookmark.]

� · · ·
� User bookmark n

� Add/remove bookmark (current directory) [Add or remove bookmark
at current location: only add or remove is shown, depending if loca-
tion is bookmarked or not.]

� Localhost [This will be the name of the host and will navigate the
window to the Rodent root view, where the system root �le, user
home directory and installed plugins are listed.]

� Home [This will navigate the window to the user's home directory,
typically ~/.]

[What follows is a list of menu items to navigate to the installed plugins.]

� Application launcher [This will take the view to the dot desktop, or
launchers, plugin.]

� Mount Point [This will take the view to the mount point plugin,
showing mount points and partitions and allowing mount/unmount
operations.]

� System Processes [This will navigate to the system processes plugin,
user or system processes may be viewed and controlled.]

� · · · [Any other root plugins installed.]

� plugin n

� Reload [This item will perform a hard reload, re-reading directory
and recreating thumbnails and previews.]

• Go to Submenu

� Go to [This will open a dialog with history driven autocompletion
to navigate to a particular point in the �lesystem. The combo entry
dropdown in the dialog is populated with history values sorted by
frequency and bash �le completion is enabled on keyboard input.
And there is a conventional GTK directory selector button to choose
a destination.]

� Quick chdir 1 [These are the equivalent of the quick change directory
lines from CDE's dt�le program and which is implemented as buttons
in the Nautilus program: in Rodent the items appear in the popup,
as everything else.]

�
...

25

� Quick chdir n

• Go up [This causes the window to navigate to the parent directory. The
deepest level shown in the quick navigation items is not a�ected by this
action.]

• Go back [This will go backwards in the navigation history. If there is no
history yet, this button will not appear.]

• Applications [This is the application launcher menu, provided by the
rodent-dotdesktop plugin. Each category will have launchers for the pro-
grams which have self classi�ed themselves into these categories.]

� Accessories

� Graphics applications

� System Tools

� Internet and Network

� Games and amusements

� O�ce Applications

� Tools for software development

� Audio and Video

� Personal preferences

• New Submenu

� Create a new �le in the given directory

� Create a new empty folder inside this folder

• Browse in New Window [This opens a new Rodent window in the current
directory.]

• Open terminal here [This will open a terminal emulator in the currently
viewed directory. If the current view is not a directory, then the terminal
will open at the user's home directory.]

• Execute Shell Command [Executes a shell command and pipes standard
output (in black) and standard error output (in red) to lp terminal area.]

• Search [Opens the rodent-fgr search tool dialog. Output may be directed
either to the lp-terminal area or contained within the dialog itself.]

• Compare Files or Folders [This opens the rodent-di� �le comparison test.
This application can create patch �les in a variety of formats and view
di�erences side by side.]

26

• Sort by [The icon shown in this menu element indicates the current sort or-
der, either ascending or descending. The default order is ascending. When
the user sets a sort order or method, that order or method is remembered
for future views of the directory until the user changes it. These radio
menu items select the sort method. Only one is active at a time and the
setting is remembered per path.]

� Ascending/Descending [Toggles sort order]

� Type [Sort by �le type. This is the default.]

� By Name [Sort by �le name. Sort is case sensitive.]

� By Size [Sort by �le size.]

� By Date [Sort by �le modi�cation date.]

� By Owner [Sort by owner id]

� By Group [Sort by group id]

� By Permissions [Sort by permissions]

• Show hidden �les [Toggle whether hidden �les should be shown. Default:
o�. This setting is remembered per path.]

• Show preview [Toggle whether previews of images, pdf �les and text �les
should be shown in the tip popup window. Default: on. This setting is
remembered per path.]

• Select [This menu item brings up a submenu with the options:]

� Select All [Selects all items]

� Select Items Matching... [Opens a dialog which allows selection based
on �lter.]

� Unselect [Unselects all previously selected items.]

• Paste [This item allow you to paste the contents of the pasteboard. If the
pasteboard is empty, the item is not shown.]

• Personal settings [This opens the rodent settings dialog. Changes made
here will a�ect all instances of rodent �lemanager.]

• About [This opens the dialog that displays information about the pro-
gram: logo, name, copyright, website and license. Credits are given to the
authors, documenters, translators and artists who have contributed to the
development of the program.]

• Help [This opens the user guide.]

• Close [Exits the application.]

27

Figure 17: Popup over icon space

5.2 Popup over icon space

Figure 17 shows what the popup menu over void space looks like.
The popup menu is context sensitive. The contents of the menu depend on

what is located beneath the pointer when the menu is summoned. If nothing is
beneath the pointer, the general popup appears. The layout of the icon speci�c
popup is as follows.

• Execute �le [If the �le is executable, then this element will appear.]

• Unpack �le [If the �le is a zipped tarball, then this element will appear.

• Mimetype application 1[According to the mimetype of the �le, di�erent
applications to open or process the �le may appear. The exact contents
of the menu items depends on the installed programs and the availability
of the dotdesktop and mime plugins.]

•
...

• Mimetype application n [The amount of mimetype applications is limited
to n menu items as a maximum.]

• Open with [Opens a dialog to choose the application to use. Multiple �les
may be opened with the same application with this option.]

• Compare �les or folders [Only appears if selected items are two or less.]

• Properties [This will open the properties dialog where characteristics of
the selected �le may be viewed or changed. Multiple �les may be selected.]

• Mount [If the item is a an x-cd-image, then this item will allow mounting
as a loop device. If the item is listed in /etc/fstab, this item will allow
mounting the device. If condition does not apply, menu item will not be
shown.]

28

• Unmount [If the item is currently mounted, this item will allow dismount-
ing. If condition does not apply, menu item will not be shown.]

• Rename [This will allow inline renaming of the item.]

• Duplicate [This will allow inline duplicating of the item. Files or entire
directories may be duplicated.]

• Symlink [This will allow inline creation of a symbolic link to the item.]

• Touch [This open a front end dialog to the touch command.]

• Cut [This will cut the item or items to the paste board. Cut items are
tagged with a scissors emblem on the upper left corner. Cut items will be
moved to the paste destination.]

• Copy [This will copy the item or items to the paste board. Copied items
are tagged with a copy emblem on the upper left corner. Copied items
will be copied to the paste destination.]

• Remove [This will open the remove dialog for the item or items. Operation
may be cancelled, unlinked or shred. Unlinked items are not recoverable
by the ordinary user but may be retrieved by specialized teams. Shreded
items may or may not be unlinked, but recovery is almost impossible
even for the most capable information services. The schred option is only
available is GNU shred is installed in the system.]

• Move to trash [This option is not available in Rodent Gamma. Type �cd
~/.Trash� in lpterminal to access Xdg spec trash folder.]

6 Con�guration

All con�gurable options are set through environment variables. The settings
dialog allows for easy setting of these variables, as well as direct in line text
setting and reviewing.

The settings dialog has the following options.

6.1 General

See �gure 18.

• Activate items with a double click

� Icon Theme Speci�cation

� Drag does move or copy by default (Drag: move)

� Folders show content emblem (Content Fetch)

� Popup previews and �le information is shown (Enable tooltips)

29

Figure 18: General settings

Figure 19: Desktop con�guration

� Default icon size

∗ Normal

∗ Details

∗ Compact

∗ Big

∗ Huge

� Default terminal emulator (options depend on the emulators avail-
able).

� Default text editor (options depend on the editors available).

� Background color.

30

Figure 20: GNU cp/mv options

6.2 Desktop

See �gure 19.

• Show icons on the root windows (Show Desktop Grid)

� Show the output from processes launched from the desktop

� Allow navigation on the desktop

� Background image selector

� Path to desktop directory selector

� Background color selector

� Top, bottom, right and left margin settings (in pixels).

6.3 Copy/Move options

See �gure 20. Some of these options may not be available under BSD.

• Copy options

31

� -a same as -dR �preserve=all

∗ -R copy directories recursively

∗ -l link �les instead of copying

∗ -L always follow symbolic links in SOURCE

∗ -n do not overwrite an existing �le

∗ -P never follow symbolic links in SOURCE

∗ -p same as �preserve=mode,ownership,timestamps

∗ -x stay on this �le system

∗ -d no-dereference, preserve links:

∗ -s make symbolic links instead of copying

∗ -b make a backup of each existing destination �le

∗ -u copy only when the SOURCE �le is newer than the destination
�le or when the destination �le is missing

∗ -H follow symbolic links in SOURCE

� Move options

∗ -b make a backup of each existing destination �le

∗ -u copy only when the SOURCE �le is newer than the destination
�le or when the destination �le is missing

∗ n do not overwrite an existing �le

� Copy/move/link options

∗ Backup method selector

· simple
· existing
· numbered
· none

6.4 Remove/Shred

See �gure 21

• Remove

� -v verbose

∗ -x remain on this �le system

� Shred

∗ -u truncate and remove �le after overwriting

∗ -z add a �nal overwrite with zeros to hide shredding

∗ -v verbose

32

Figure 21: GNU rm/shred options

6.5 Advanced Options

• This item lists and allows editing the con�guration enviroment variables.

7 Helper applications

7.1 Internal

Several commands and auxiliary applications or artwork are distributed with
the Rodent Filemanager package. These are the internal helper applications,
and may be used independently or by other applications.

7.1.1 Rodent-fgr and fgr: File content search command

rodent-fgr is a graphic frontend for fgr. See �gure 22.

SYNOPSYS fgr [-r] [-v] [-d ddd] [-m mmm] [-f filter] [-s (+/-)size]

[-t type] [-p perm] [grep options...]

-v verbose

-V Print version number information

-P print process id

-f �lter �le �lter (enclosed in quotes if regexp *,? or [] is used)

-r recursive

-s +kbytes Size greater than kbytes KBYTES

-s -kbytes size less than kbytes KBYTES

33

Figure 22: Rodent-fgr

34

-p perm perm is either suid | exe

-t type reg | dir | sym | sock | blk | chr | fifo (regular, directory, sym-
link, socket, blk_dev, chr_dev, �fo)

-d ddd created or modi�ed in the previous (int) ddd days

-m mmm created or modi�ed in the previous (int) mm months

-p perm perm is either suid | exe

-e string containing string (if *,? or [], use quotes)

-E regexp containing regexp: (use quotes).

-i ignore case (for search string -c)

-y same as -i (obsolete)

7.1.2 Rodent-di�

Graphic front end to the GNU diff command. See �gure 23.

7.1.3 Rodent-mime

This is the application used to customize the icons used by Rodent. All icons in
the Rodent �lemanager are customizable. In order to customize, drag and drop
the icons from the treeview on the right to the treeview on the left. When you
press the save button, a custom will be saved in your con�guration directory
and the full path will be listed in a dialog after a successful write.

If by any chance you want to make your custom icon layout the system wide
default, move it to $PREFIX/rfm-Gamma/icons.mime.xml. The default con�g-
uration �le in the tarball distribution is located at rodent/libs/icons/mime.

If you change icon themes, since the Rodent icon theme follows the xdg
naming speci�cation, the respective icons should be found in the new icon theme.
If the new icon theme does not have an icon for a standard named icon, then
Rodent falls back to the original Rodent icon theme.

The rodent-mime application is shown in �gure 24. This application may be
executed either from the lp-terminal command line or by pressing the �icons�
button in the �Personal preferences� dialog.

7.1.4 Rodent-root

Rodent-root is the application which sets the background image for the desktop.
It will set the default X root window to use the image, as well as the background
for the rodent-desk application. When the background is changed by means of
the �Personal preferences� dialog, this is the application which is called. It may
also be called by selecting the popup menu over any supported image type.
Once rodent-root selects a background image, this choice becomes the user's
default background.

35

Figure 23: rodent-di� front end

36

Figure 24: Rodent-mime (custom icon layout setup)

7.1.5 Rodent icon theme

The Rodent icon theme is a native Xfce development. It was created by Francois
Le Clainche and has been enriched by Lonerocker's contributions at freedesk-
top.org. The icon theme is now distributed and maintained by the Rodent
�lemanager project. The name of the Rodent �lemanager is derived from this
icon theme, although you can choose any desktop icon theme you may fancy.

7.2 External

Reinvent the wheel? No thanks. Bug free code exists for copying, moving,
linking, touching and many other fundamental �le operations in GNU and BSD
versions. Reusability is one of the strengths of free software which should not
be ignored.

In the initial years, one of the de�ning points of Xfce in the early years was
to keep applications small. So if time proven versions for the same operations
is already available and installed, why duplicate code?

What follows is a description of external programs developed by world class
programmers which comprise the core set of operations used by the Rodent
�lemanager. Currently the full power of these commands is not harnessed by
Rodent, but functionality will be extended in future releases.

37

7.2.1 cp: Copy �les and directories 9

Written by Torbjorn Granlund, David MacKenzie, and Jim Meyer-
ing.
`cp' copies �les (or, optionally, directories). The copy is completely indepen-

dent of the original. You can either copy one �le to another, or copy arbitrarily
many �les to a destination directory.

Synopses: cp [OPTION]... [-T] SOURCE DEST cp [OPTION]... SOURCE...

DIRECTORY cp [OPTION]... -t DIRECTORY SOURCE...

• If two �le names are given, `cp' copies the �rst �le to the second.

• If the `--target-directory' (`-t') option is given, or failing that if the
last �le is a directory and the `--no-target-directory' (`-T') option
is not given, `cp' copies each SOURCE �le to the speci�ed directory, using
the SOURCEs' names.

Generally, �les are written just as they are read. For exceptions, see the
`--sparse' option below.

By default, `cp' does not copy directories. However, the `-R', `-a', and
`-r' options cause `cp' to copy recursively by descending into source directories
and copying �les to corresponding destination directories.

When copying from a symbolic link, `cp' normally follows the link only when
not copying recursively. This default can be overridden with the `--archive'
(`-a'), `-d', `--dereference' (`-L'), `--no-dereference' (`-P'), and `-H'
options. If more than one of these options is speci�ed, the last one silently
overrides the others.

When copying to a symbolic link, `cp' follows the link only when it refers
to an existing regular �le. However, when copying to a dangling symbolic link,
`cp' refuses by default, and fails with a diagnostic, since the operation is inher-
ently dangerous. This behavior is contrary to historical practice and to POSIX.
Set `POSIXLY_CORRECT' to make `cp' attempt to create the target of a dan-
gling destination symlink, in spite of the possible risk. Also, when an option
like `--backup' or `--link' acts to rename or remove the destination before
copying, `cp' renames or removes the symbolic link rather than the �le it points
to.

By default, `cp' copies the contents of special �les only when not copying
recursively. This default can be overridden with the `--copy-contents' option.

`cp' generally refuses to copy a �le onto itself, with the following exception:
if `--force --backup' is speci�ed with SOURCE and DEST identical, and refer-
ring to a regular �le, `cp' will make a backup �le, either regular or numbered,
as speci�ed in the usual ways (*note Backup options::). This is useful when you
simply want to make a backup of an existing �le before changing it.

The program accepts the following options. Also see *note Common op-
tions::.

9The following section is available with the command `info cp'.

38

`-a' `�archive' Preserve as much as possible of the structure and attributes
of the original �les in the copy (but do not attempt to preserve internal
directory structure; i.e., `ls -U' may list the entries in a copied direc-
tory in a di�erent order). Try to preserve SELinux security context and
extended attributes (xattr), but ignore any failure to do that and print
no corresponding diagnostic. Equivalent to `-dR --preserve=all' with
the reduced diagnostics.

`-b' `�backup[=METHOD]' Make a backup of each �le that would otherwise
be overwritten or removed. As a special case, `cp' makes a backup of
SOURCE when the force and backup options are given and SOURCE and
DEST are the same name for an existing, regular �le. More information in
section 7.3.1. One useful application of this combination of options is this
tiny Bourne shell script:

#!/bin/sh

Usage: backup FILE...

Create a GNU-style backup of each listed FILE.

for i;

do

cp --backup --force -- "$i" "$i"

done

`�copy-contents' If copying recursively, copy the contents of any special �les
(e.g., FIFOs and device �les) as if they were regular �les. This means try-
ing to read the data in each source �le and writing it to the destination. It
is usually a mistake to use this option, as it normally has undesirable ef-
fects on special �les like FIFOs and the ones typically found in the `/dev'
directory. In most cases, `cp -R --copy-contents' will hang inde�nitely
trying to read from FIFOs and special �les like `/dev/console', and it
will �ll up your destination disk if you use it to copy `/dev/zero'. This
option has no e�ect unless copying recursively, and it does not a�ect the
copying of symbolic links.

`-d' Copy symbolic links as symbolic links rather than copying the �les that
they point to, and preserve hard links between source �les in the copies.
Equivalent to `--no-dereference --preserve=links'.

`-f ' `�force' When copying without this option and an existing destination �le
cannot be opened for writing, the copy fails. However, with `--force'),
when a destination �le cannot be opened, `cp' then removes it and
tries to open it again. Contrast this behavior with that enabled by
`--link' and `--symbolic-link', whereby the destination �le is never
opened but rather is removed unconditionally. Also see the description of
`--remove-destination'.

This option is independent of the `--interactive' or `-i' option: nei-
ther cancels the e�ect of the other.

39

This option is redundant if the `--no-clobber' or `-n' option is used.

`-H' If a command line argument speci�es a symbolic link, then copy the �le it
points to rather than the symbolic link itself. However, copy (preserving
its nature) any symbolic link that is encountered via recursive traversal.

`-i' `�interactive' When copying a �le other than a directory, prompt whether
to overwrite an existing destination �le. The `-i' option overrides a
previous `-n' option.

`-l' `�link' Make hard links instead of copies of non-directories.

`-L' `�dereference' Follow symbolic links when copying from them. With
this option, `cp' cannot create a symbolic link. For example, a symlink
(to regular �le) in the source tree will be copied to a regular �le in the
destination tree.

`-n' `�no-clobber' Do not overwrite an existing �le. The `-n' option overrides
a previous `-i' option. This option is mutually exclusive with `-b' or
`--backup' option.

`-P' `�no-dereference' Copy symbolic links as symbolic links rather than
copying the �les that they point to. This option a�ects only symbolic
links in the source; symbolic links in the destination are always followed
if possible.

`-p' `�preserve[=ATTRIBUTE_LIST]' Preserve the speci�ed attributes
of the original �les. If speci�ed, the ATTRIBUTE_LIST must be a comma-
separated list of one or more of the following strings:

`mode' Preserve the �le mode bits and access control lists.

`ownership' Preserve the owner and group. On most modern systems,
only users with appropriate privileges may change the owner of a �le,
and ordinary users may preserve the group ownership of a �le only if
they happen to be a member of the desired group.

`timestamps' Preserve the times of last access and last modi�cation,
when possible. On older systems, it is not possible to preserve these
attributes when the a�ected �le is a symbolic link. However, many
systems now provide the `utimensat' function, which makes it pos-
sible even for symbolic links.

`links' Preserve in the destination �les any links between corresponding
source �les. Note that with `-L' or `-H', this option can convert
symbolic links to hard links. For example,

$ mkdir c; : > a; ln -s a b; cp -aH a b c; ls -i1 c

74161745 a

74161745 b

40

Note the inputs: `b' is a symlink to regular �le `a', yet the �les
in destination directory, `c/', are hard-linked. Since `-a' implies
`--preserve=links', and since `-H' tells `cp' to dereference com-
mand line arguments, it sees two �les with the same inode number,
and preserves the perceived hard link.

Here is a similar example that exercises `cp�s `-L' option:

$ mkdir b c; (cd b; : > a; ln -s a b)

$ cp -aL b c; ls -i1 c/b

74163295 a

74163295 b

`context' Preserve SELinux security context of the �le, or fail with full
diagnostics.

`xattr' Preserve extended attributes of the �le, or fail with full diagnos-
tics. If `cp' is built without xattr support, ignore this option. If
SELinux context, ACLs or Capabilities are implemented using xat-
trs, they are preserved by this option as well.

`all' Preserve all �le attributes. Equivalent to specifying all of the above,
but with the di�erence that failure to preserve SELinux security con-
text or extended attributes does not change `cp�s exit status. In
contrast to `-a', all but `Operation not supported' warnings are out-
put.

Using `--preserve' with no ATTRIBUTE_LIST is equivalent to
`--preserve=mode,ownership,timestamps'.

In the absence of this option, each destination �le is created with the mode
bits of the corresponding source �le, minus the bits set in the umask and
minus the set-user-ID and set-group-ID bits (see section 7.3.2).

`�no-preserve=ATTRIBUTE_LIST' Do not preserve the speci�ed attributes.
The ATTRIBUTE_LIST has the same form as for `--preserve'.

`�parents' Form the name of each destination �le by appending to the tar-
get directory a slash and the speci�ed name of the source �le. The last
argument given to `cp' must be the name of an existing directory. For
example, the command:

cp --parents a/b/c existing_dir

copies the �le `a/b/c' to `existing_dir/a/b/c', creating any missing
intermediate directories.

`-R' `-r' `�recursive' Copy directories recursively. By default, do not fol-
low symbolic links in the source; see the `--archive' (`-a'), `-d',
`--dereference' (`-L'), `--no-dereference' (`-P'), and `-H' op-
tions. Special �les are copied by creating a destination �le of the same

41

type as the source; see the `--copy-contents' option. It is not portable
to use `-r' to copy symbolic links or special �les. On some non-GNU
systems, `-r' implies the equivalent of `-L' and `--copy-contents' for
historical reasons. Also, it is not portable to use `-R' to copy symbolic
links unless you also specify `-P', as POSIX allows implementations that
dereference symbolic links by default.

`�re�ink[=WHEN]' Perform a lightweight, copy-on-write (COW) copy. Copy-
ing with this option can succeed only on some �le systems. Once it has
succeeded, beware that the source and destination �les share the same
disk data blocks as long as they remain unmodi�ed. Thus, if a disk I/O
error a�ects data blocks of one of the �les, the other su�ers the exact same
fate.

The WHEN value can be one of the following:

`always' The default behavior: if the copy-on-write operation is not sup-
ported then report the failure for each �le and exit with a failure
status.

`auto' If the copy-on-write operation is not supported then fall back to
the standard copy behaviour.

`�remove-destination' Remove each existing destination �le before at-
tempting to open it (contrast with `-f' above).

`�sparse=WHEN' A "sparse �le" contains "holes" �a sequence of zero bytes
that does not occupy any physical disk blocks; the `read' system call
reads these as zeros. This can both save considerable disk space and
increase speed, since many binary �les contain lots of consecutive zero
bytes. By default, `cp' detects holes in input source �les via a crude
heuristic and makes the corresponding output �le sparse as well. Only
regular �les may be sparse.

The WHEN value can be one of the following:

`auto' The default behavior: if the input �le is sparse, attempt to make
the output �le sparse, too. However, if an output �le exists but refers
to a non-regular �le, then do not attempt to make it sparse.

`always' For each su�ciently long sequence of zero bytes in the input
�le, attempt to create a corresponding hole in the output �le, even
if the input �le does not appear to be sparse. This is useful when
the input �le resides on a �le system that does not support sparse
�les (for example, `efs' �le systems in SGI IRIX 5.3 and earlier), but
the output �le is on a type of �le system that does support them.
Holes may be created only in regular �les, so if the destination �le is
of some other type, `cp' does not even try to make it sparse.

`never' Never make the output �le sparse. This is useful in creating a
�le for use with the `mkswap' command, since such a �le must not
have any holes.

42

`�strip-trailing-slashes' Remove any trailing slashes from each SOURCE argu-
ment (see section 7.3.10).

`-s' `�symbolic-link' Make symbolic links instead of copies of non-directories.
All source �le names must be absolute (starting with `/') unless the
destination �les are in the current directory. This option merely results in
an error message on systems that do not support symbolic links.

`-S SUFFIX' `�su�x=SUFFIX' Append SUFFIX to each backup �le made
with `-b'(see section 7.3.1).

`-t DIRECTORY' `�target-directory=DIRECTORY' Specify the desti-
nation DIRECTORY (see section 7.3.9).

`-T' `�no-target-directory' Do not treat the last operand specially when it
is a directory or a symbolic link to a directory(see section 7.3.9).

`-u' `�update' Do not copy a non-directory that has an existing destination
with the same or newer modi�cation time. If time stamps are being pre-
served, the comparison is to the source time stamp truncated to the resolu-
tions of the destination �le system and of the system calls used to update
time stamps; this avoids duplicate work if several `cp -pu' commands
are executed with the same source and destination.

`-v' `�verbose' Print the name of each �le before copying it.

`-x' `�one-�le-system' Skip subdirectories that are on di�erent �le systems
from the one that the copy started on. However, mount point directories
are copied.

An exit status of zero indicates success, and a nonzero value indicates failure.

7.2.2 rm: Remove �les or directories

Written by Paul Rubin, David MacKenzie, Richard M. Stallman, and
Jim Meyering.
`rm' removes each given FILE. By default, it does not remove directories.
Synopsis:
rm [OPTION]... [FILE]...

If the `-I' or `--interactive=once' option is given, and there are more
than three �les or the `-r', `-R', or `--recursive' are given, then `rm'

prompts the user for whether to proceed with the entire operation. If the re-
sponse is not a�rmative, the entire command is aborted.

Otherwise, if a �le is unwritable, standard input is a terminal, and the `-f'
or `--force' option is not given, or the `-i' or `--interactive=always'

option is given, `rm' prompts the user for whether to remove the �le. If the
response is not a�rmative, the �le is skipped.

Any attempt to remove a �le whose last �le name component is `.' or `..'
is rejected without any prompting.

43

Warning : If you use `rm' to remove a �le, it is usually possible to recover
the contents of that �le. If you want more assurance that the contents are truly
unrecoverable, consider using `shred' (section 7.2.10).

The program accepts the following options. Also see *note Common op-
tions::.

`-f ' `�force' Ignore nonexistent �les and never prompt the user. Ignore any
previous `--interactive' (`-i') option.

`-i' Prompt whether to remove each �le. If the response is not a�rmative, the
�le is skipped. Ignore any previous `--force' (`-f') option. Equivalent
to `--interactive=always'.

`-I' Prompt once whether to proceed with the command, if more than three
�les are named or if a recursive removal is requested. Ignore any previous
`--force' (`-f') option. Equivalent to `--interactive=once'.

`�interactive [=WHEN]' Specify when to issue an interactive prompt. WHEN
may be omitted, or one of:

never - Do not prompt at all.

once - Prompt once if more than three �les are named or if a recursive
removal is requested. Equivalent to `-I'.

always - Prompt for every �le being removed. Equivalent to `-i'. `--interactive'
with no WHEN is equivalent to `--interactive=always'.

`�one-�le-system' When removing a hierarchy recursively, skip any directory
that is on a �le system di�erent from that of the corresponding command
line argument.

This option is useful when removing a build "chroot" hierarchy, which
normally contains no valuable data. However, it is not uncommon to bind-
mount `/home' into such a hierarchy, to make it easier to use one's start-up
�le. The catch is that it's easy to forget to unmount `/home'. Then, when
you use `rm -rf' to remove your normally throw-away chroot, that com-
mand will remove everything under `/home', too. Use the `--one-file-system'
option, and it will warn about and skip directories on other �le systems.
Of course, this will not save your `/home' if it and your chroot happen
to be on the same �le system.

`�preserve-root' Fail upon any attempt to remove the root directory, `/',
when used with the `--recursive' option. This is the default behavior
(see section 7.3.11).

`�no-preserve-root' Do not treat `/' specially when removing recursively.
This option is not recommended unless you really want to remove all the
�les on your computer (see section 7.3.11).

44

`-r' `-R' `�recursive' Remove the listed directories and their contents recur-
sively.

`-v' `�verbose' Print the name of each �le before removing it.

One common question is how to remove �les whose names begin with a `-'.
GNU `rm', like every program that uses the `getopt' function to parse its
arguments, lets you use the `--' option to indicate that all following arguments
are non-options. To remove a �le called `-f' in the current directory, you could
type either:

rm -- -f

or:
rm ./-f

The Unix `rm' program's use of a single `-' for this purpose predates the
development of the getopt standard syntax.

An exit status of zero indicates success, and a nonzero value indicates failure.

7.2.3 ln: Make links between �les

Written by Mike Parker and David MacKenzie.
`ln' makes links between �les. By default, it makes hard links; with the `-s'

option, it makes symbolic (or soft) links.
Synopses:
ln [OPTION]... [-T] TARGET LINKNAME ln [OPTION]... TARGET

ln [OPTION]... TARGET... DIRECTORY ln [OPTION]... -t DIRECTORY

TARGET...

• If two �le names are given, `ln' creates a link to the �rst �le from the
second.

• If one TARGET is given, `ln' creates a link to that �le in the current
directory.

• If the `--target-directory' (`-t') option is given, or failing that if
the last �le is a directory and the `--no-target-directory' (`-T')

option is not given, `ln' creates a link to each TARGET �le in the speci�ed
directory, using the TARGETs' names.

Normally `ln' does not remove existing �les. Use the `--force' (`-f') op-
tion to remove them unconditionally, the `--interactive' (`-i') option to
remove them conditionally, and the `--backup' (`-b') option to rename them.

A hard link is another name for an existing �le; the link and the original
are indistinguishable. Technically speaking, they share the same inode, and the
inode contains all the information about a �le �indeed, it is not incorrect to
say that the inode is the �le. Most systems prohibit making a hard link to a
directory; on those where it is allowed, only the super-user can do so (and with
caution, since creating a cycle will cause problems to many other utilities). Hard

45

links cannot cross �le system boundaries. (These restrictions are not mandated
by POSIX, however.)

Symbolic links (symlinks for short), on the other hand, are a special �le
type (which not all kernels support: System V release 3 (and older) systems
lack symlinks) in which the link �le actually refers to a di�erent �le, by name.
When most operations (opening, reading, writing, and so on) are passed the
symbolic link �le, the kernel automatically dereferences the link and operates
on the target of the link. But some operations (e.g., removing) work on the link
�le itself, rather than on its target. The owner and group of a symlink are not
signi�cant to �le access performed through the link, but do have implications
on deleting a symbolic link from a directory with the restricted deletion bit set.
On the GNU system, the mode of a symlink has no signi�cance and cannot be
changed, but on some BSD systems, the mode can be changed and will a�ect
whether the symlink will be traversed in �le name resolution. More on symbolic
links in section 7.3.7.

Symbolic links can contain arbitrary strings; a dangling symlink occurs when
the string in the symlink does not resolve to a �le. There are no restrictions
against creating dangling symbolic links. There are trade-o�s to using absolute
or relative symlinks. An absolute symlink always points to the same �le, even
if the directory containing the link is moved. However, if the symlink is visible
from more than one machine (such as on a networked �le system), the �le
pointed to might not always be the same. A relative symbolic link is resolved in
relation to the directory that contains the link, and is often useful in referring to
�les on the same device without regards to what name that device is mounted
on when accessed via networked machines.

When creating a relative symlink in a di�erent location than the current
directory, the resolution of the symlink will be di�erent than the resolution of
the same string from the current directory. Therefore, many users prefer to �rst
change directories to the location where the relative symlink will be created, so
that tab-completion or other �le resolution will �nd the same target as what
will be placed in the symlink.

The program accepts the following options. Also see section 7.3.8.

`-b' `�backup[=METHOD]' Make a backup of each �le that would otherwise
be overwritten or removed (see section 7.3.1).

`-d' `-F' `�directory' Allow users with appropriate privileges to attempt to
make hard links to directories. However, note that this will probably fail
due to system restrictions, even for the super-user.

`-f ' `�force' Remove existing destination �les.

`-i' `�interactive' Prompt whether to remove existing destination �les.

`-L' `�logical' If `-s' is not in e�ect, and the source �le is a symbolic link,
create the hard link to the �le referred to by the symbolic link, rather
than the symbolic link itself.

46

`-n' `�no-dereference' Do not treat the last operand specially when it is a
symbolic link to a directory. Instead, treat it as if it were a normal �le.

When the destination is an actual directory (not a symlink to one), there is
no ambiguity. The link is created in that directory. But when the speci�ed
destination is a symlink to a directory, there are two ways to treat the user's
request. `ln' can treat the destination just as it would a normal directory and
create the link in it. On the other hand, the destination can be viewed as a
non-directory �as the symlink itself. In that case, `ln' must delete or backup
that symlink before creating the new link. The default is to treat a destination
that is a symlink to a directory just like a directory.

This option is weaker than the `--no-target-directory' (`-T') option,
so it has no e�ect if both options are given.

`-P' `�physical' If `-s' is not in e�ect, and the source �le is a symbolic link,
create the hard link to the symbolic link itself. On platforms where this
is not supported by the kernel, this option creates a symbolic link with
identical contents; since symbolic link contents cannot be edited, any �le
name resolution performed through either link will be the same as if a
hard link had been created.

`-s' `�symbolic' Make symbolic links instead of hard links. This option merely
produces an error message on systems that do not support symbolic links.

`-S SUFFIX' `�su�x=SUFFIX' Append SUFFIX to each backup �le made
with `-b' (see section 7.3.1).

`-t DIRECTORY' `�target-directory=DIRECTORY' Specify the desti-
nation DIRECTORY (see section 7.3.9).

`-T' `�no-target-directory' Do not treat the last operand specially when it
is a directory or a symbolic link to a directory (see section 7.3.9).

`-v' `�verbose' Print the name of each �le after linking it successfully.

If `-L' and `-P' are both given, the last one takes precedence. If `-s' is also
given, `-L' and `-P' are silently ignored. If neither option is given, then this
implementation defaults to `-P' if the system `link' supports hard links to
symbolic links (such as the GNU system), and `-L' if `link' follows symbolic
links (such as on BSD).

An exit status of zero indicates success, and a nonzero value indicates failure.

• Examples:

Bad Example:

Create link ../a pointing to a in that directory.

Not really useful because it points to itself.

ln -s a ..

47

Better Example:

Change to the target before creating symlinks to avoid being

confused. cd .. ln -s adir/a .

Bad Example:

Hard coded file names don't move well.

ln -s $(pwd)/a /some/dir/

Better Example:

Relative file names survive directory moves and also

work across networked file systems.

ln -s afile anotherfile

ln -s ../adir/afile yetanotherfile

7.2.4 touch: Change �le timestamps

Written by Paul Rubin, Arnold Robbins, Jim Kingdon, David MacKen-
zie, and Randy Smith.
`touch' changes the access and/or modi�cation times of the speci�ed �les.

Synopsis:
touch [OPTION]... FILE...

Any FILE argument that does not exist is created empty, unless option
`--no-create' (`-c') or `--no-dereference' (`-h') was in e�ect.

A FILE argument string of `-' is handled specially and causes `touch' to
change the times of the �le associated with standard output.

If changing both the access and modi�cation times to the current time,
`touch' can change the timestamps for �les that the user running it does not
own but has write permission for. Otherwise, the user must own the �les.

Although `touch' provides options for changing two of the times �the times
of last access and modi�cation� of a �le, there is actually a standard third one
as well: the inode change time. This is often referred to as a �le's `ctime'.
The inode change time represents the time when the �le's meta-information
last changed. One common example of this is when the permissions of a �le
change. Changing the permissions doesn't access the �le, so the atime doesn't
change, nor does it modify the �le, so the mtime doesn't change. Yet, something
about the �le itself has changed, and this must be noted somewhere. This is
the job of the ctime �eld. This is necessary, so that, for example, a backup
program can make a fresh copy of the �le, including the new permissions value.
Another operation that modi�es a �le's ctime without a�ecting the others is
renaming. In any case, it is not possible, in normal operations, for a user to
change the ctime �eld to a user-speci�ed value. Some operating systems and �le
systems support a fourth time: the birth time, when the �le was �rst created;
by de�nition, this timestamp never changes.

Time stamps assume the time zone rules speci�ed by the `TZ' environment
variable, or by the system default rules if `TZ' is not set (see section 7.3.12).

48

You can avoid ambiguities during daylight saving transitions by using UTC time
stamps.

The program accepts the following options. Also see section_7.3.8.

`-a' `�time=atime' `�time=access' `�time=use' Change the access time
only.

`-c' `�no-create' Do not warn about or create �les that do not exist.

`-d' `�date=TIME' Use TIME instead of the current time. It can contain
month names, time zones, `am' and `pm', `yesterday', etc. For exam-
ple, `--date="2004-02-27 14:19:13.489392193 +0530"' speci�es the
instant of time that is 489,392,193 nanoseconds after February 27, 2004 at
2:19:13 PM in a time zone that is 5 hours and 30 minutes east of UTC. File
systems that do not support high-resolution time stamps silently ignore
any excess precision here.

`-f ' Ignored; for compatibility with BSD versions of `touch'.

`-h' `�no-dereference' Attempt to change the timestamps of a symbolic link,
rather than what the link refers to. When using this option, empty �les
are not created, but option `-c' must also be used to avoid warning about
�les that do not exist. Not all systems support changing the timestamps of
symlinks, since underlying system support for this action was not required
until POSIX 2008. Also, on some systems, the mere act of examining
a symbolic link changes the access time, such that only changes to the
modi�cation time will persist long enough to be observable. When coupled
with option `-r', a reference timestamp is taken from a symbolic link
rather than the �le it refers to.

`-m' `�time=mtime' `�time=modify' Change the modi�cation time only.

`-r FILE' `�reference=FILE' Use the times of the reference FILE instead of
the current time. If this option is combined with the `--date=TIME' (`-d

TIME') option, the reference FILE's time is the origin for any relative TIMEs
given, but is otherwise ignored. For example, `-r foo -d '-5 seconds�

speci�es a time stamp equal to �ve seconds before the corresponding time
stamp for `foo'. If FILE is a symbolic link, the reference timestamp is
taken from the target of the symlink, unless `-h' was also in e�ect.

`-t [[CC]YY]MMDDHHMM[.SS]' Use the argument (optional four-digit or
two-digit years, months, days, hours, minutes, optional seconds) instead
of the current time. If the year is speci�ed with only two digits, then CC

is 20 for years in the range 0 ... 68, and 19 for years in 69 ... 99. If no
digits of the year are speci�ed, the argument is interpreted as a date in the
current year. Note that SS may be `60', to accommodate leap seconds.

On older systems, `touch' supports an obsolete syntax, as follows. If no times-
tamp is given with any of the `-d', `-r', or `-t' options, and if there are two

49

or more FILEs and the �rst FILE is of the form `MMDDHHMM[YY]' and this would
be a valid argument to the `-t' option (if the YY, if any, were moved to the
front), and if the represented year is in the range 1969-1999, that argument is
interpreted as the time for the other �les instead of as a �le name. This obsolete
behavior can be enabled or disabled with the `_POSIX2_VERSION' environment
variable, but portable scripts should avoid commands whose behavior depends
on this variable. For example, use `touch ./12312359 main.c' or `touch -t

12312359 main.c' rather than the ambiguous `touch 12312359 main.c'.
An exit status of zero indicates success, and a nonzero value indicates failure.

7.2.5 sudo: execute a command as another user

Many people have worked on sudo over the years; this version consists
of code written primarily by Todd C. Miller. See the HISTORY �le in
the sudo distribution or visit http://www.sudo.ws/sudo/history.html
for a short history of sudo.
sudo allows a permitted user to execute a command as the superuser or

another user, as speci�ed in the sudoers �le. The real and e�ective uid and
gid are set to match those of the target user as speci�ed in the passwd �le
and the group vector is initialized based on the group �le (unless the -P option
was speci�ed). If the invoking user is root or if the target user is the same
as the invoking user, no password is required. Otherwise, sudo requires that
users authenticate themselves with a password by default (NOTE: in the default
con�guration this is the user's password, not the root password). Once a user
has been authenticated, a time stamp is updated and the user may then use
sudo without a password for a short period of time (5 minutes unless overridden
in sudoers).

When invoked as sudoedit, the -e option (described below), is implied.
sudo determines who is an authorized user by consulting the �le /etc/sudoers.

By running sudo with the -v option, a user can update the time stamp with-
out running a command. If a password is required, sudo will exit if the user's
password is not entered within a con�gurable time limit. The default password
prompt timeout is 5 minutes.

If a user who is not listed in the sudoers �le tries to run a command via
sudo, mail is sent to the proper authorities, as de�ned at con�gure time or in
the sudoers �le (defaults to root). Note that the mail will not be sent if an
unauthorized user tries to run sudo with the -l or -v option. This allows users
to determine for themselves whether or not they are allowed to use sudo.

If sudo is run by root and the SUDO_USER environment variable is set, sudo
will use this value to determine who the actual user is. This can be used by a
user to log commands through sudo even when a root shell has been invoked. It
also allows the -e option to remain useful even when being run via a sudo-run

script or program. Note however, that the sudoers lookup is still done for root,
not the user speci�ed by SUDO_USER.

sudo can log both successful and unsuccessful attempts (as well as errors)
to syslog(3), a log �le, or both. By default sudo will log via syslog(3) but

50

this is changeable at con�gure time or via the sudoers �le.
sudo accepts the following command line options:

-A Normally, if sudo requires a password, it will read it from the current termi-
nal. If the -A (askpass) option is speci�ed, a (possibly graphical) helper
program is executed to read the user's password and output the password
to the standard output. If the SUDO_ASKPASS environment variable is set,
it speci�es the path to the helper program. Otherwise, the value speci�ed
by the askpass option in sudoers(5) is used.

-s [command] The -s (shell) option runs the shell speci�ed by the SHELL en-
vironment variable if it is set or the shell as speci�ed in passwd(5). If a
command is speci�ed, it is passed to the shell for execution. Otherwise,
an interactive shell is executed.

� The -- option indicates that sudo should stop processing command line ar-
guments.

SECURITY NOTES

sudo tries to be safe when executing external commands.
There are two distinct ways to deal with environment variables. By default,

the env_reset sudoers option is enabled. This causes commands to be executed
with a minimal environment containing TERM, PATH, HOME, SHELL, LOGNAME,

USER and USERNAME in addition to variables from the invoking process permitted
by the env_check and env_keep sudoers options. There is e�ectively a whitelist
for environment variables.

If, however, the env_reset option is disabled in sudoers, any variables not
explicitly denied by the env_check and env_delete options are inherited from
the invoking process. In this case, env_check and env_delete behave like a
blacklist. Since it is not possible to blacklist all potentially dangerous environ-
ment variables, use of the default env_reset behavior is encouraged.

In all cases, environment variables with a value beginning with () are re-
moved as they could be interpreted as bash functions. The list of environment
variables that sudo allows or denies is contained in the output of sudo -V when
run as root.

Please note that sudo will normally only log the command it explicitly runs.
If a user runs a command such as sudo su or sudo sh, subsequent commands
run from that shell will not be logged, nor will sudo's access control a�ect them.
The same is true for commands that o�er shell escapes (including most editors).
Because of this, care must be taken when giving users access to commands via
sudo to verify that the command does not inadvertently give the user an e�ective
root shell.

7.2.6 libmagic

Written by Måns Rullgård Initial libmagic implementation, and con-
�guration. Christos Zoulas API cleanup, error code and allocation

51

handling.
file is a standard Unix program for recognizing the type of data contained

in a computer �le using magic number. Libmagic is the library which �le uses,
made available for Rodent to use directly.

The original version of �le originated in Unix Research Version 4[1] in 1973.
System V saw a major update with several important changes, most notably
moving the �le type information into an external text �le rather than compiling
it into the binary itself.

All major BSD and Linux distributions use a free, open-source reimplemen-
tation which was written in 1986-87 by Ian Darwin[2] from scratch. It was
expanded by Geo� Collyer in 1989 and since then has had input from many
others, including Guy Harris, Chris Lowth and Eric Fischer; from late 1993
onward its maintenance has been organized by Christos Zoulas.

7.2.7 ps: report a snapshot of the current processes

Written by by Branko Lankester <lankeste@fwi.uva.nl>. Michael K.
Johnson <johnsonm@redhat.com> re-wrote it signi�cantly to use the
proc �lesystem, changing a few things in the process. Michael Shields
<mjshield@nyx.cs.du.edu> added the pid-list feature. Charles Blake
<cblake@bbn.com> added multi-level sorting, the dirent-style library,
the device name-to-number mmaped database, the approximate bi-
nary search directly on System.map, and many code and documenta-
tion cleanups. David Mossberger-Tang wrote the generic BFD sup-
port for psupdate. Albert Cahalan <albert@users.sf.net> rewrote
ps for full Unix98 and BSD support, along with some ugly hacks for
obsolete and foreign syntax.
SYNOPSIS
ps [options]

ps displays information about a selection of the active processes. If you want
a repetitive update of the selection and the displayed information, use top(1)

instead.
This version of ps accepts several kinds of options:

1. UNIX options, which may be grouped and must be preceded by a dash.

2. BSD options, which may be grouped and must not be used with a dash.

3. GNU long options, which are preceded by two dashes.

Options of di�erent types may be freely mixed, but con�icts can appear. There
are some synonymous options, which are functionally identical, due to the many
standards and ps implementations that this ps is compatible with.

Note that "ps -aux" is distinct from "ps aux". The POSIX and UNIX stan-
dards require that "ps -aux" print all processes owned by a user named "x",
as well as printing all processes that would be selected by the -a option. If the
user named "x" does not exist, this ps may interpret the command as "ps aux"

52

instead and print a warning. This behavior is intended to aid in transitioning
old scripts and habits. It is fragile, subject to change, and thus should not be
relied upon.

By default, ps selects all processes with the same e�ective user ID (euid=EUID)
as the current user and associated with the same terminal as the invoker. It
displays the process ID (pid=PID), the terminal associated with the process
(tname=TTY), the cumulated CPU time in [dd-]hh:mm:ss format (time=TIME),
and the executable name (ucmd=CMD). Output is unsorted by default.

The use of BSD-style options will add process state (stat=STAT) to the
default display and show the command args (args=COMMAND) instead of the exe-
cutable name. You can override this with the PS_FORMAT environment variable.
The use of BSD-style options will also change the process selection to include
processes on other terminals (TTYs) that are owned by you; alternately, this
may be described as setting the selection to be the set of all processes �ltered
to exclude processes owned by other users or not on a terminal. These e�ects
are not considered when options are described as being "identical" below, so -M

will be considered identical to Z and so on.
Except as described below, process selection options are additive. The de-

fault selection is discarded, and then the selected processes are added to the set
of processes to be displayed. A process will thus be shown if it meets any of the
given selection criteria.

7.2.8 di�

Written by Paul Eggert, Mike Haertel, David Hayes, Richard Stall-
man, and Len Tower.
diff OPTIONS... FILES...

In the simplest case, two �le names FROM-FILE and TO-FILE are given, and
`diff' compares the contents of FROM-FILE and TO-FILE. A �le name of `-'
stands for text read from the standard input. As a special case, `diff - -'

compares a copy of standard input to itself.
If one �le is a directory and the other is not, `diff' compares the �le in the

directory whose name is that of the non-directory. The non-directory �le must
not be `-'.

If two �le names are given and both are directories, `diff' compares cor-
responding �les in both directories, in alphabetical order; this comparison is
not recursive unless the `-r' or `--recursive' option is given. `diff' never
compares the actual contents of a directory as if it were a �le. The �le that is
fully speci�ed may not be standard input, because standard input is nameless
and the notion of �le with the same name does not apply.

If the `--from-file=FILE' option is given, the number of �le names is arbi-
trary, and FILE is compared to each named �le. Similarly, if the `--to-file=FILE'
option is given, each named �le is compared to FILE.

`diff' options begin with `-', so normally �le names may not begin `diff'

options begin with `-', so normally �le names may not begin with `-'. How-
ever, `--' as an argument by itself treats the remaining arguments as �le names

53

even if they begin with `-'.
An exit status of 0 means no di�erences were found, 1 means some di�erences

were found, and 2 means trouble. Normally, di�ering binary �les count as
trouble, but this can be altered by using the `-a' or `--text' option, or the
`-q' or `--brief' option.

7.2.9 bash: GNU Bourne-Again SHell

Written by Brian Fox, Free Software Foundation bfox@gnu.org, Chet
Ramey, Case Western Reserve University chet.ramey@case.edu
SYNOPSIS:
bash [options] [file]

Bash is an sh-compatible command language interpreter that executes com-
mands read from the standard input or from a �le. Bash also incorporates useful
features from the Korn and C shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities
portion of the IEEE POSIX speci�cation (IEEE Standard 1003.1). Bash can be
con�gured to be POSIX-conformant by default.

7.2.10 shred: Remove �les more securely

Written by Colin Plumb.
`shred' overwrites devices or �les, to help prevent even very expensive hard-

ware from recovering the data.
Ordinarily when you remove a �le (see section 7.2.2, the data is not actually

destroyed. Only the index listing where the �le is stored is destroyed, and the
storage is made available for reuse. There are undelete utilities that will attempt
to reconstruct the index and can bring the �le back if the parts were not reused.

On a busy system with a nearly-full drive, space can get reused in a few
seconds. But there is no way to know for sure. If you have sensitive data, you
may want to be sure that recovery is not possible by actually overwriting the
�le with non-sensitive data.

However, even after doing that, it is possible to take the disk back to a
laboratory and use a lot of sensitive (and expensive) equipment to look for the
faint "echoes" of the original data underneath the overwritten data. If the data
has only been overwritten once, it's not even that hard.

The best way to remove something irretrievably is to destroy the media it's
on with acid, melt it down, or the like. For cheap removable media like �oppy
disks, this is the preferred method. However, hard drives are expensive and hard
to melt, so the `shred' utility tries to achieve a similar e�ect non-destructively.

This uses many overwrite passes, with the data patterns chosen to maximize
the damage they do to the old data. While this will work on �oppies, the pat-
terns are designed for best e�ect on hard drives. For more details, see the source
code and Peter Gutmann's paper Secure Deletion of Data from Magnetic and

Solid-State Memory (http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html),

54

from the proceedings of the Sixth USENIX Security Symposium (San Jose, Cal-
ifornia, July 22-25, 1996).

Please note that `shred' relies on a very important assumption: that the
�le system overwrites data in place. This is the traditional way to do things,
but many modern �le system designs do not satisfy this assumption. Exceptions
include:

• Log-structured or journaled �le systems, such as those supplied with AIX
and Solaris, and JFS, ReiserFS, XFS, Ext3 (in `data=journal' mode),
BFS, NTFS, etc. when they are con�gured to journal data.

• File systems that write redundant data and carry on even if some writes
fail, such as RAID-based �le systems.

• File systems that make snapshots, such as Network Appliance's NFS
server.

• File systems that cache in temporary locations, such as NFS version 3
clients.

• Compressed �le systems.

In the particular case of ext3 �le systems, the above disclaimer applies (and
`shred' is thus of limited e�ectiveness) only in `data=journal' mode, which
journals �le data in addition to just metadata. In both the `data=ordered' (de-
fault) and `data=writeback' modes, `shred' works as usual. Ext3 journaling
modes can be changed by adding the `data=something' option to the mount
options for a particular �le system in the `/etc/fstab' �le, as documented in
the mount man page (man mount).

If you are not sure how your �le system operates, then you should assume
that it does not overwrite data in place, which means that shred cannot reliably
operate on regular �les in your �le system.

Generally speaking, it is more reliable to shred a device than a �le, since
this bypasses the problem of �le system design mentioned above. However,
even shredding devices is not always completely reliable. For example, most
disks map out bad sectors invisibly to the application; if the bad sectors contain
sensitive data, `shred' won't be able to destroy it.

`shred' makes no attempt to detect or report this problem, just as it makes
no attempt to do anything about backups. However, since it is more reliable
to shred devices than �les, `shred' by default does not truncate or remove the
output �le. This default is more suitable for devices, which typically cannot be
truncated and should not be removed.

Finally, consider the risk of backups and mirrors. File system backups and
remote mirrors may contain copies of the �le that cannot be removed, and that
will allow a shredded �le to be recovered later. So if you keep any data you
may later want to destroy using `shred', be sure that it is not backed up or
mirrored.

shred [OPTION]... FILE[...]

55

shred [OPTION]... FILE[...]

The program accepts the following options. Also see section 7.3.8.
`-f' `�force' Override �le permissions if necessary to allow overwriting.

`-NUMBER' `-n NUMBER' `�iterations=NUMBER' By default, `shred'
uses 3 passes of overwrite. You can reduce this to save time, or increase it
if you think it's appropriate. After 25 passes all of the internal overwrite
patterns will have been used at least once.

`�random-source=FILE' Use FILE as a source of random data used to over-
write and to choose pass ordering.

`-s BYTES' `�size=BYTES' Shred the �rst BYTES bytes of the �le. The de-
fault is to shred the whole �le. BYTES can be followed by a size speci�cation
like `K', `M', or `G' to specify a multiple.

`-u' `�remove' After shredding a �le, truncate it (if possible) and then remove
it. If a �le has multiple links, only the named links will be removed.

`-v' `�verbose' Display to standard error all status updates as sterilization
proceeds.

`-x' `�exact' By default, `shred' rounds the size of a regular �le up to the
next multiple of the �le system block size to fully erase the last block of
the �le. Use `--exact' to suppress that behavior. Thus, by default if you
shred a 10-byte regular �le on a system with 512-byte blocks, the resulting
�le will be 512 bytes long. With this option, shred does not increase the
apparent size of the �le.

`-z' `�zero' Normally, the last pass that `shred' writes is made up of ran-
dom data. If this would be conspicuous on your hard drive (for example,
because it looks like encrypted data), or you just think it's tidier, the
`--zero' option adds an additional overwrite pass with all zero bits. This
is in addition to the number of passes speci�ed by the `--iterations'

option.

You might use the following command to erase all trace of the �le system you'd
created on the �oppy disk in your �rst drive. That command takes about 20
minutes to erase a "1.44MB" (actually 1440 KiB) �oppy.

shred --verbose /dev/fd0

Similarly, to erase all data on a selected partition of your hard disk, you
could give a command like this:

shred --verbose /dev/sda5

A FILE of `-' denotes standard output. The intended use of this is to shred
a removed temporary �le. For example:

i=`mktemp` exec 3<>"$i" rm -- "$i" echo "Hello, world" >&3 shred

- >&3 exec 3>-

However, the command `shred - >file' does not shred the contents of
FILE, since the shell truncates FILE before invoking `shred'. Use the command

56

`shred file' or (if using a Bourne-compatible shell) the command `shred -

1<>file' instead.
An exit status of zero indicates success, and a nonzero value indicates failure.

7.2.11 ghostscript: PostScript and PDF language interpreter and
pre- viewer

Artifex Software, Inc. are the primary maintainers of Ghostscript.
Russell J. Lang, gsview at ghostgum.com.au, is the author of most of
the MS Windows code in Ghostscript.
The gs command invokes Ghostscript, an interpreter of Adobe Systems'

PostScript(tm) and Portable Document Format (PDF) languages. gs reads
"�les" in sequence and executes them as Ghostscript programs. After doing
this, it reads further input from the standard input stream (normally the key-
board), interpreting each line separately. The interpreter exits gracefully when
it encounters the "quit" command (either in a �le or from the keyboard), at
end-of-�le, or at an interrupt signal (such as Control-C at the keyboard).

The interpreter recognizes many option switches, some of which are described
below. Please see the usage documentation for complete information. Switches
may appear anywhere in the command line and apply to all �les thereafter.
Invoking Ghostscript with the -h or -? switch produces a message which shows
several useful switches, all the devices known to that executable, and the search
path for fonts; on Unix it also shows the location of detailed documentation.

Ghostscript may be built to use many di�erent output devices. To see
which devices your executable includes, run "gs -h". Unless you specify a
particular device, Ghostscript normally opens the �rst one of those and directs
output to it, so if the �rst one in the list is the one you want to use, just issue
the command

gs myfile.ps

On Unix and MS Windows systems you can also send output to a pipe. For
example, to pipe output to the "lpr" command (which, on many Unix systems,
directs it to a printer), use the option

-sOutputFile=%pipe%lpr

7.3 Apendix

7.3.1 Backup options

Some GNU programs (at least `cp', `install', `ln', and `mv') optionally
make backups of �les before writing new versions. These options control the de-
tails of these backups. The options are also brie�y mentioned in the descriptions
of the particular programs.

`-b' `�backup[=METHOD]' Make a backup of each �le that would other-
wise be overwritten or removed. Without this option, the original ver-
sions are destroyed. Use METHOD to determine the type of backups to
make. When this option is used but METHOD is not speci�ed, then the

57

value of the `VERSION_CONTROL' environment variable is used. And if
`VERSION_CONTROL' is not set, the default backup type is `existing'.

Note that the short form of this option, `-b' does not accept any argument.
Using `-b' is equivalent to using `--backup=existing'.

This option corresponds to the Emacs variable `version-control'; the
values for METHOD are the same as those used in Emacs. This option also ac-
cepts more descriptive names. The valid METHODs are (unique abbreviations are
accepted):

`none' `o�' Never make backups.

`numbered' `t' Always make numbered backups.

`existing' `nil' Make numbered backups of �les that already have them, simple
backups of the others.

`simple' `never' Always make simple backups. Please note `never' is not to
be confused with `none'.

7.3.2 File permissions

Each �le has a set of �le mode bits that control the kinds of access that users
have to that �le. They can be represented either in symbolic form or as an octal
number.

• Mode Structure:: Structure of �le mode bits.

The �le mode bits have two parts: the �le permission bits, which control
ordinary access to the �le, and special mode bits, which a�ect only some
�les.

There are three kinds of permissions that a user can have for a �le:

1. permission to read the �le. For directories, this means permission to
list the contents of the directory.

2. permission to write to (change) the �le. For directories, this means
permission to create and remove �les in the directory.

3. permission to execute the �le (run it as a program). For directories,
this means permission to access �les in the directory.

There are three categories of users who may have di�erent permissions to
perform any of the above operations on a �le:

1. the �le's owner;

2. other users who are in the �le's group;

3. everyone else.

58

Files are given an owner and group when they are created. Usually the
owner is the current user and the group is the group of the directory the
�le is in, but this varies with the operating system, the �le system the �le
is created on, and the way the �le is created. You can change the owner
and group of a �le by using the `chown' and `chgrp' commands.

In addition to the three sets of three permissions listed above, the �le
mode bits have three special components, which a�ect only executable
�les (programs) and, on most systems, directories:

1. Set the process's e�ective user ID to that of the �le upon execution
(called the set-user-ID bit, or sometimes the setuid bit). For direc-
tories on a few systems, give �les created in the directory the same
owner as the directory, no matter who creates them, and set the
set-user-ID bit of newly-created subdirectories.

2. Set the process's e�ective group ID to that of the �le upon execution
(called the set-group-ID bit, or sometimes the setgid bit). For direc-
tories on most systems, give �les created in the directory the same
group as the directory, no matter what group the user who creates
them is in, and set the set-group-ID bit of newly-created subdirecto-
ries.

3. Prevent unprivileged users from removing or renaming a �le in a
directory unless they own the �le or the directory; this is called the
restricted deletion �ag for the directory, and is commonly found on
world-writable directories like `/tmp'.

For regular �les on some older systems, save the program's text image on
the swap device so it will load more quickly when run; this is called the
sticky bit.

In addition to the �le mode bits listed above, there may be �le attributes
speci�c to the �le system, e.g., access control lists (ACLs), whether a �le
is compressed, whether a �le can be modi�ed (immutability), and whether
a �le can be dumped. These are usually set using programs speci�c to the
�le system. For example:

ext2 On GNU and GNU/Linux the �le attributes speci�c to the ext2 �le
system are set using `chattr'.

FFS On FreeBSD the �le �ags speci�c to the FFS �le system are set
using `chflags'.

Even if a �le's mode bits allow an operation on that �le, that operation
may still fail, because:

� the �le-system-speci�c attributes or �ags do not permit it; or

� the �le system is mounted as read-only.

59

For example, if the immutable attribute is set on a �le, it cannot be
modi�ed, regardless of the fact that you may have just run `chmod a+w

FILE'.

• Symbolic Modes:: Mnemonic representation of �le mode bits.

Symbolic modes represent changes to �les' mode bits as operations on
single-character symbols. They allow you to modify either all or selected
parts of �les' mode bits, optionally based on their previous values, and
perhaps on the current `umask' as well (see section 7.3.3).

The format of symbolic modes is:

[ugoa...][+-=]PERMS...[,...]

where PERMS is either zero or more letters from the set `rwxXst', or a
single letter from the set `ugo'.

The following sections describe the operators and other details of symbolic
modes.

� Setting Permissions (see section).

� Copying Permissions (see section).

� Changing Special Mode Bits(see section).

� Conditional Executability (see section 7.3.4).

� Multiple Changes (see section 7.3.5).

� Umask and Protection (see section 7.3.3).

• Numeric Modes:: File mode bits as octal numbers.

As an alternative to giving a symbolic mode, you can give an octal (base
8) number that represents the mode. This number is always interpreted in
octal; you do not have to add a leading `0', as you do in C. Mode `0055'
is the same as mode `55'.

A numeric mode is usually shorter than the corresponding symbolic mode,
but it is limited in that normally it cannot take into account the previ-
ous �le mode bits; it can only set them absolutely. (As discussed in the
next section, the set-user-ID and set-group-ID bits of directories are an
exception to this general limitation.)

The permissions granted to the user, to other users in the �le's group, and
to other users not in the �le's group each require three bits, which are
represented as one octal digit. The three special mode bits also require
one bit each, and they are as a group represented as another octal digit.
Here is how the bits are arranged, starting with the lowest valued bit:

60

Value Mode Corresponding Mode Bit

Other users not in the �le's group:
1 Execute/search
2 Write
4 Read

Other users in the �le's group
10 Execute/search
20 Write
40 Read

The �le's owner:
100 Execute/search
200 Write
400 Read

Special mode bits:
1000 Restricted deletion �ag or sticky bit
2000 Set group ID on execution
4000 Set user ID on execution

For example, numeric mode `4755' corresponds to symbolic mode `u=rwxs,go=rx',
and numeric mode `664' corresponds to symbolic mode `ug=rw,o=r'.
Numeric mode `0' corresponds to symbolic mode `a='.

• Directory Setuid and Setgid:: Set-user-ID and set-group-ID on directories.

On most systems, if a directory's set-group-ID bit is set, newly created
sub�les inherit the same group as the directory, and newly created sub-
directories inherit the set-group-ID bit of the parent directory. On a few
systems, a directory's set-user-ID bit has a similar e�ect on the owner-
ship of new sub�les and the set-user-ID bits of new subdirectories. These
mechanisms let users share �les more easily, by lessening the need to use
`chmod' or `chown' to share new �les.

These convenience mechanisms rely on the set-user-ID and set-group-ID
bits of directories. If commands like `chmod' and `mkdir' routinely
cleared these bits on directories, the mechanisms would be less conve-
nient and it would be harder to share �les. Therefore, a command like
`chmod' does not a�ect the set-user-ID or set-group-ID bits of a directory
unless the user speci�cally mentions them in a symbolic mode, or sets them
in a numeric mode. For example, on systems that support set-group-ID
inheritance:

These commands leave the set-user-ID and

set-group-ID bits of the subdirectories alone,

so that they retain their default values.

61

mkdir A B C

chmod 755 A

chmod 0755 B

chmod u=rwx,go=rx C

mkdir -m 755 D

mkdir -m 0755 E

mkdir -m u=rwx,go=rx F

If you want to try to set these bits, you must mention them explicitly in
the symbolic or numeric modes, e.g.:

These commands try to set the set-user-ID

and set-group-ID bits of the subdirectories.

mkdir G H

chmod 6755 G

chmod u=rwx,go=rx,a+s H

mkdir -m 6755 I

mkdir -m u=rwx,go=rx,a+s J

If you want to try to clear these bits, you must mention them explicitly
in a symbolic mode, e.g.:

This command tries to clear the set-user-ID

and set-group-ID bits of the directory D.

chmod a-s D

This behavior is a GNU extension. Portable scripts should not rely on
requests to set or clear these bits on directories, as POSIX allows imple-
mentations to ignore these requests.

7.3.3 Umask and Protection

If the USERS part of a symbolic mode is omitted, it defaults to `a' (a�ect all
users), except that any permissions that are set in the system variable `umask'
are not a�ected. The value of `umask' can be set using the `umask' command.
Its default value varies from system to system.

Omitting the USERS part of a symbolic mode is generally not useful with
operations other than `+'. It is useful with `+' because it allows you to use
`umask' as an easily customizable protection against giving away more permis-
sion to �les than you intended to.

As an example, if `umask' has the value 2, which removes write permission
for users who are not in the �le's group, then the mode:

+w

adds permission to write to the �le to its owner and to other users who are
in the �le's group, but not to other users. In contrast, the mode:

62

a+w

ignores `umask', and does give write permission for the �le to all users.

7.3.4 Conditional Executability

There is one more special type of symbolic permission: if you use `X' instead
of `x', execute/search permission is a�ected only if the �le is a directory or
already had execute permission.

For example, this mode:
a+X

gives all users permission to search directories, or to execute �les if anyone
could execute them before.

7.3.5 Making Multiple Changes

The format of symbolic modes is actually more complex than described above
(*note Setting Permissions::). It provides two ways to make multiple changes
to �les' mode bits.

The �rst way is to specify multiple OPERATION and PERMISSIONS parts
after a USERS part in the symbolic mode.

For example, the mode:
og+rX-w

gives users other than the owner of the �le read permission and, if it is a
directory or if someone already had execute permission to it, gives them exe-
cute/search permission; and it also denies them write permission to the �le. It
does not a�ect the permission that the owner of the �le has for it. The above
mode is equivalent to the two modes:

og+rX og-w

The second way to make multiple changes is to specify more than one simple
symbolic mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the �le and removes write permission on
it for all users except its owner. Another example:

u=rwx,g=rx,o=

sets all of the permission bits for the �le explicitly. (It gives users who are
not in the �le's group no permission at all for it.)

The two methods can be combined. The mode:
a+r,g+x-w

gives all users permission to read the �le, and gives users who are in the �le's
group permission to execute/search it as well, but not permission to write to it.
The above mode could be written in several di�erent ways; another is:

u+r,g+rx,o+r,g-w

7.3.6 Setting Permissions

The basic symbolic operations on a �le's permissions are adding, removing, and
setting the permission that certain users have to read, write, and execute or

63

search the �le. These operations have the following format:
USERS OPERATION PERMISSIONS

The spaces between the three parts above are shown for readability only;
symbolic modes cannot contain spaces.

The USERS part tells which users' access to the �le is changed. It consists
of one or more of the following letters (or it can be empty; see section 7.3.3 for
a description of what happens then). When more than one of these letters is
given, the order that they are in does not matter.

`u' the user who owns the �le;
`g' other users who are in the �le's group;
`o' all other users;
`a' all users; the same as `ugo'.
The OPERATION part tells how to change the a�ected users' access to the �le,

and is one of the following symbols:
`+' to add the PERMISSIONS to whatever permissions the USERS already have

for the �le;
`-' to remove the PERMISSIONS from whatever permissions the USERS al-

ready have for the �le;
`=' to make the PERMISSIONS the only permissions that the USERS have for

the �le.
The PERMISSIONS part tells what kind of access to the �le should be changed;

it is normally zero or more of the following letters. As with the USERS part,
the order does not matter when more than one letter is given. Omitting the
PERMISSIONS part is useful only with the `=' operation, where it gives the
speci�ed USERS no access at all to the �le.

`r' the permission the USERS have to read the �le;
`w' the permission the USERS have to write to the �le;
`x' the permission the USERS have to execute the �le, or search it if it is a

directory.
For example, to give everyone permission to read and write a regular �le,

but not to execute it, use:
a=rw

To remove write permission for all users other than the �le's owner, use:
go-w

The above command does not a�ect the access that the owner of the �le has
to it, nor does it a�ect whether other users can read or execute the �le.

To give everyone except a �le's owner no permission to do anything with
that �le, use the mode below. Other users could still remove the �le, if they
have write permission on the directory it is in.

go=

Another way to specify the same thing is:
og-rwx

64

7.3.7 Symbolic links

The GNU system supports soft links or symbolic links. This is a kind of �le that
is essentially a pointer to another �le name. Unlike hard links, symbolic links
can be made to directories or across �le systems with no restrictions. You can
also make a symbolic link to a name which is not the name of any �le. (Opening
this link will fail until a �le by that name is created.) Likewise, if the symbolic
link points to an existing �le which is later deleted, the symbolic link continues
to point to the same �le name even though the name no longer names any �le.

The reason symbolic links work the way they do is that special things happen
when you try to open the link. The `open' function realizes you have speci�ed
the name of a link, reads the �le name contained in the link, and opens that
�le name instead. The `stat' function likewise operates on the �le that the
symbolic link points to, instead of on the link itself.

By contrast, other operations such as deleting or renaming the �le operate
on the link itself. The functions `readlink' and `lstat' also refrain from
following symbolic links, because their purpose is to obtain information about
the link. `link', the function that makes a hard link, does too. It makes a
hard link to the symbolic link, which one rarely wants.

Some systems have for some functions operating on �les have a limit on how
many symbolic links are followed when resolving a path name. The limit if it
exists is published in the `sys/param.h' header �le.

7.3.8 Common options

Certain options are available in all of these programs. Rather than writing
identical descriptions for each of the programs, they are described here. (In
fact, every GNU program accepts (or should accept) these options.)

Normally options and operands can appear in any order, and programs act as
if all the options appear before any operands. For example, `sort -r passwd

-t :' acts like `sort -r -t : passwd', since `:' is an option-argument
of `-t'. However, if the `POSIXLY_CORRECT' environment variable is set, op-
tions must appear before operands, unless otherwise speci�ed for a particular
command.

A few programs can usefully have trailing operands with leading `-'. With
such a program, options must precede operands even if `POSIXLY_CORRECT' is
not set, and this fact is noted in the program description. For example, the
`env' command's options must appear before its operands, since in some cases
the operands specify a command that itself contains options.

Most programs that accept long options recognize unambiguous abbrevia-
tions of those options. For example, `rmdir --ignore-fail-on-non-empty'

can be invoked as `rmdir --ignore-fail' or even `rmdir --i'. Ambiguous
options, such as `ls --h', are identi�ed as such.

Some of these programs recognize the `--help' and `--version' options
only when one of them is the sole command line argument. For these programs,
abbreviations of the long options are not always recognized.

65

`�help' Print a usage message listing all available options, then exit successfully.

`�version' Print the version number, then exit successfully.

`�' Delimit the option list. Later arguments, if any, are treated as operands
even if they begin with `-'. For example, `sort -- -r' reads from the
�le named `-r'.

A single `-' operand is not really an option, though it looks like one. It stands
for standard input, or for standard output if that is clear from the context.
For example, `sort -' reads from standard input, and is equivalent to plain
`sort', and `tee -' writes an extra copy of its input to standard output.
Unless otherwise speci�ed, `-' can appear as any operand that requires a �le
name.

7.3.9 Target directory

The `cp', `install', `ln', and `mv' commands normally treat the last operand
specially when it is a directory or a symbolic link to a directory. For example,
`cp source dest' is equivalent to `cp source dest/source' if `dest' is a
directory. Sometimes this behavior is not exactly what is wanted, so these
commands support the following options to allow more �ne-grained control:

`-T' `�no-target-directory' Do not treat the last operand specially when it
is a directory or a symbolic link to a directory. This can help avoid
race conditions in programs that operate in a shared area. For exam-
ple, when the command `mv /tmp/source /tmp/dest' succeeds, there is
no guarantee that `/tmp/source' was renamed to `/tmp/dest': it could
have been renamed to `/tmp/dest/source' instead, if some other process
created `/tmp/dest' as a directory. However, if `mv -T /tmp/source

/tmp/dest' succeeds, there is no question that `/tmp/source' was re-
named to `/tmp/dest'.

In the opposite situation, where you want the last operand to be treated as a di-
rectory and want a diagnostic otherwise, you can use the `--target-directory'
(`-t') option.

`-t DIRECTORY' `�target-directory=DIRECTORY' Use DIRECTORY as
the directory component of each destination �le name.

The interface for most programs is that after processing options and a �nite
(possibly zero) number of �xed-position arguments, the remaining argument
list is either expected to be empty, or is a list of items (usually �les) that will
all be handled identically. The `xargs' program is designed to work well with
this convention.

The commands in the `mv'-family are unusual in that they take a variable
number of arguments with a special case at the end (namely, the target direc-
tory). This makes it nontrivial to perform some operations, e.g., "move all �les
from here to ../d/", because `mv * ../d/' might exhaust the argument space,

66

and `ls | xargs ...' doesn't have a clean way to specify an extra �nal ar-
gument for each invocation of the subject command. (It can be done by going
through a shell command, but that requires more human labor and brain power
than it should.)

The `--target-directory' (`-t') option allows the `cp', `install',
`ln', and `mv' programs to be used conveniently with `xargs'. For example,
you can move the �les from the current directory to a sibling directory, `d' like
this:

ls | xargs mv -t ../d --

However, this doesn't move �les whose names begin with `.'. If you use the
GNU `find' program, you can move those �les too, with this command:

find . -mindepth 1 -maxdepth 1 \ | xargs mv -t ../d

But both of the above approaches fail if there are no �les in the current
directory, or if any �le has a name containing a blank or some other special
characters. The following example removes those limitations and requires both
GNU `find' and GNU `xargs':

find . -mindepth 1 -maxdepth 1 -print0 \ | xargs --null --no-run-if-empty

\ mv -t ../d10

The `--target-directory' (`-t') and `--no-target-directory' (`-T')

options cannot be combined.

7.3.10 Trailing slashes

Some GNU programs (at least `cp' and `mv') allow you to remove any trailing
slashes from each SOURCE argument before operating on it. The `�strip-trailing-
slashes' option enables this behavior.

This is useful when a SOURCE argument may have a trailing slash and specify
a symbolic link to a directory. This scenario is in fact rather common because
some shells can automatically append a trailing slash when performing �le name
completion on such symbolic links. Without this option, `mv', for example,
(via the system's rename function) must interpret a trailing slash as a request
to dereference the symbolic link and so must rename the indirectly referenced
directory and not the symbolic link. Although it may seem surprising that such
behavior be the default, it is required by POSIX and is consistent with other
parts of that standard.

7.3.11 Treating `/' specially

Certain commands can operate destructively on entire hierarchies. For exam-
ple, if a user with appropriate privileges mistakenly runs `rm -rf / tmp/junk',
that may remove all �les on the entire system. Since there are so few legitimate
uses for such a command, GNU `rm' normally declines to operate on any di-
rectory that resolves to `/'. If you really want to try to remove all the �les on
your system, you can use the `--no-preserve-root' option, but the default
behavior, speci�ed by the `--preserve-option', is safer for most purposes.

10Now isn't that nerdy?

67

The commands `chgrp', `chmod' and `chown' can also operate destruc-
tively on entire hierarchies, so they too support these options. Although, unlike
`rm', they don't actually unlink �les, these commands are arguably more dan-
gerous when operating recursively on `/', since they often work much more
quickly, and hence damage more �les before an alert user can interrupt them.
Tradition and POSIX require these commands to operate recursively on `/',
so they default to `--no-preserve-root', but using the `--preserve-root'

option makes them safer for most purposes. For convenience you can specify
`--preserve-root' in an alias or in a shell function.

Note that the `--preserve-root' option also ensures that `chgrp' and
`chown' do not modify `/' even when dereferencing a symlink pointing to `/'.

7.3.12 Specifying the Time Zone with `TZ'

In POSIX systems, a user can specify the time zone by means of the `TZ'

environment variable. For information about how to set environment variables,
see section 7.3.13. The functions for accessing the time zone are declared in
`time.h'.

You should not normally need to set `TZ'. If the system is con�gured prop-
erly, the default time zone will be correct. You might set `TZ' if you are using
a computer over a network from a di�erent time zone, and would like times
reported to you in the time zone local to you, rather than what is local to the
computer.

In POSIX.1 systems the value of the `TZ' variable can be in one of three
formats. With the GNU C library, the most common format is the last one,
which can specify a selection from a large database of time zone information for
many regions of the world. The �rst two formats are used to describe the time
zone information directly, which is both more cumbersome and less precise. But
the POSIX.1 standard only speci�es the details of the �rst two formats, so it is
good to be familiar with them in case you come across a POSIX.1 system that
doesn't support a time zone information database.

The �rst format is used when there is no Daylight Saving Time (or summer
time) in the local time zone:

STD OFFSET

The STD string speci�es the name of the time zone. It must be three or
more characters long and must not contain a leading colon, embedded digits,
commas, nor plus and minus signs. There is no space character separating the
time zone name from the OFFSET, so these restrictions are necessary to parse
the speci�cation correctly.

The OFFSET speci�es the time value you must add to the local time to get a
Coordinated Universal Time value. It has syntax like [`+'|`-']HH[`:'MM[`:'SS]].
This is positive if the local time zone is west of the Prime Meridian and nega-
tive if it is east. The hour must be between `0' and `23', and the minute and
seconds between `0' and `59'.

For example, here is how we would specify Eastern Standard Time, but
without any Daylight Saving Time alternative:

68

EST+5

The second format is used when there is Daylight Saving Time:
STD OFFSET DST [OFFSET]`,'START[`/'TIME]`,'END[`/'TIME]

The initial STD and OFFSET specify the standard time zone, as described
above. The DST string and OFFSET specify the name and o�set for the corre-
sponding Daylight Saving Time zone; if the OFFSET is omitted, it defaults to
one hour ahead of standard time.

The remainder of the speci�cation describes when Daylight Saving Time is
in e�ect. The START �eld is when Daylight Saving Time goes into e�ect and
the END �eld is when the change is made back to standard time. The following
formats are recognized for these �elds:

`JN' This speci�es the Julian day, with N between `1' and `365'. February
29 is never counted, even in leap years.

`N' This speci�es the Julian day, with N between `0' and `365'. February
29 is counted in leap years.

`MM.W.D' This speci�es day D of week W of month M. The day D must be
between `0' (Sunday) and `6'. The week W must be between `1' and `5';
week `1' is the �rst week in which day D occurs, and week `5' speci�es the last
D day in the month. The month M should be between `1' and `12'.

The TIME �elds specify when, in the local time currently in e�ect, the change
to the other time occurs. If omitted, the default is `02:00:00'.

For example, here is how you would specify the Eastern time zone in the
United States, including the appropriate Daylight Saving Time and its dates of
applicability. The normal o�set from UTC is 5 hours; since this is west of the
prime meridian, the sign is positive. Summer time begins on the �rst Sunday
in April at 2:00am, and ends on the last Sunday in October at 2:00am.

EST+5EDT,M4.1.0/2,M10.5.0/2

The schedule of Daylight Saving Time in any particular jurisdiction has
changed over the years. To be strictly correct, the conversion of dates and times
in the past should be based on the schedule that was in e�ect then. However,
this format has no facilities to let you specify how the schedule has changed from
year to year. The most you can do is specify one particular schedule �usually
the present day schedule� and this is used to convert any date, no matter when.
For precise time zone speci�cations, it is best to use the time zone information
database (see below).

The third format looks like this:
:CHARACTERS

Each operating system interprets this format di�erently; in the GNU C
library, CHARACTERS is the name of a �le which describes the time zone.

If the `TZ' environment variable does not have a value, the operation chooses
a time zone by default. In the GNU C library, the default time zone is like the
speci�cation `TZ=:/etc/localtime' (or `TZ=:/usr/local/etc/localtime',
depending on how GNU C library was con�gured. Other C libraries use their
own rule for choosing the default time zone, so there is little we can say about
them.

69

If CHARACTERS begins with a slash, it is an absolute �le name; otherwise the
library looks for the �le `/share/lib/zoneinfo/CHARACTERS'. The `zoneinfo'
directory contains data �les describing local time zones in many di�erent parts of
the world. The names represent major cities, with subdirectories for geographi-
cal areas; for example, `America/New_York', `Europe/London',
`Asia/Hong_Kong'. These data �les are installed by the system administra-
tor, who also sets `/etc/localtime' to point to the data �le for the local time
zone. The GNU C library comes with a large database of time zone information
for most regions of the world, which is maintained by a community of volunteers
and put in the public domain.

7.3.13 Environment Variables

When a program is executed, it receives information about the context in which
it was invoked in two ways. The �rst mechanism uses the ARGV and ARGC

arguments to its `main' function. The second mechanism uses "environment
variables" and is discussed in this section.

The ARGV mechanism is typically used to pass command-line arguments spe-
ci�c to the particular program being invoked. The environment, on the other
hand, keeps track of information that is shared by many programs, changes
infrequently, and that is less frequently used.

The environment variables discussed in this section are the same environment
variables that you set using assignments and the `export' command in the shell.
Programs executed from the shell inherit all of the environment variables from
the shell.

Standard environment variables are used for information about the user's
home directory, terminal type, current locale, and so on; you can de�ne addi-
tional variables for other purposes. The set of all environment variables that
have values is collectively known as the "environment".

Names of environment variables are case-sensitive and must not contain the
character `='. System-de�ned environment variables are invariably uppercase.

The values of environment variables can be anything that can be represented
as a string. A value must not contain an embedded null character, since this is
assumed to terminate the string.

8 Modules

This section contains information about structural module design of interest
only to programmers, so you may skip this section if you are not interested in
looking under the hood and examining how the cables are wired up.

Modules are divided into two types, root modules and functional modules.
The functionality of both type of modules is de�ned in terms of four basic types
of functions which generate a functional space isomorphic to the set of complex
numbers with rational real component and integer imaginary component. That

70

might sound like a bunch of hogwash to someone without a graduate mathe-
matics degree, but it works and is very �exible (both in practice and in theory).

Plugin functions may be speci�ed as one of the following types.

void: These functions all return a void pointer and take no argument

natural: These functions all return a void pointer and take a single void pointer
argument. The space of natural functions is isomorphic to the set of
natural numbers.

rational: These functions all return a void pointer and take a two void pointer
arguments. The space of rational functions is isomorphic to the set of
rational numbers.

complex: These functions all return a void pointer and take a three void
pointer arguments. The space of rational functions is isomorphic to the
set of complex numbers with integer imaginary component.

The api for programming modules is scheduled to be released with Rodent
Delta, along with the Programmer's Guide. This will allow to use the basic
Rodent framework with any applicacion the programmer may deem �t, just as
the plugins distributed with the Rodent package do.

71

