
 Overview-1

NCDaudio March 13, 1993

Overview of NCDaudio

Definition Of NCDaudio
NCDaudio is a system developed by NCD for playing, recording,
and manipulating audio data over a network. Like the X Window
System, it uses the client/server model to separate application code
from the specific drivers needed to control audio input and output
devices attached to the X terminal or PC display station.

What Does It Provide?
Graphical user interfaces often result in dramatic increases in pro-
ductivity because they allow information to be presented more
effectively than plain text-based screens. Sound can further enhance
an application by providing yet another channel for conveying infor-
mation.

The NCDaudio service provides several new capabilities for applica-
tions:

❏ Sound data can be sent from the application to the desktop
unit for playing on the internal or external speakers (if any).

❏ If a microphone or other audio input device is attached,
sound data can be recorded and transmitted back to the
application.

❏ Sound data can be stored in the audio server for later play-
back. This allows commonly-used sounds to be replayed
without having to send them over the network every time.

❏ Multiple sources of sound data can be mixed and manipu-
lated in a variety of ways (e.g., made louder or softer,
sampled more frequently or less).

❏ A variety of sound formats are supported, with conversion
performed automatically within the audio server.

Applications use a library of simple function calls to read audio data
from files and generate requests to the NCDaudio server.

What Is Audio Data?
Physically, sounds are waves of compressed or expanded air. We are
able to hear them because the bones of the inner ear vibrate when
struck by the waves. These vibrations are interpreted by the brain as
sound. Similarly, we speak by reversing the process, causing air to
pass over our vocal cords and vibrate back and forth. Audio devices
such as microphones and speakers work essentially the same way.

NCDaudio

Overview-2

March 13, 1993

Conveniently, these vibrations occur along a single direction. They
can be measured by noting the position of the diaphragm that is
pushing or being pushed by the air (see Figure 1). Microphones work
by translating the position of such a diaphragm into electronic
signals. When these signals are sent to a speaker, they cause another
diaphragm to reproduce the original motion of the air, allowing us to
hear the sound as it was produced.

Since the position of the microphone or speaker diaphragm varies
smoothly with time, recording it exactly would require an infinite
number of measurements. Digital systems such as computers and
compact discs instead approximate the motion by taking samples of
the positions, as shown in Figure 2. The number of positions
recorded in a second is called the sample rate; higher rates result in a
more accurate representation of the original sound, but take more
space to store.

These sequences of position samples are used in the NCDaudio
service to represent sounds. Playing a sound involves sending a
sequence to a speaker; recording takes a sequence from a microphone
or other input device and stores it into the server’s memory.

Figure 1: Continuous Graph of Audio Diaphragm Positions

Figure 2: Sampled Graph of Audio Diaphragm Positions

P
os

iti
on Time

P
os

iti
on Time

 Overview-3

NCDaudio March 13, 1993

Data Formats
The sequence of numbers that are used to encode audio data vary in
value from -1.0 to +1.0, representing the two extreme positions that a
diaphragm can reach in a given device. The value 0.0 corresponds to
the center of the device.

However, since floating point numbers occupy a large amount of
space and are sometimes difficult to manipulate, most file formats
store the sample values by multiplying them by 128 or 32768 and
rounding to the closest integer. The most common formats are:

❏ Linear – In this format, each 8- or 16-bit value contains the
scaled sample. The larger size allows the value to more
accurately represent the original data. Some versions store
the signed values directly; others add 128 or 32768 to make
them be unsigned. The 16-bit versions also come in most-
significant byte first and least-significant byte first varieties.

❏ µLAW – In this format, each 8-bit value contains the sign
and the logarithm of the scaled sample. This enables the
larger range of 16-bit values to be represented in 8-bits by
trading accuracy at the further positions (which aren’t used
very often and can tolerate values being a little off) for pre-
cision at the positions nearer to zero (which are used most
of the time).

The NCDaudio service supports both of these formats and their vari-
ants and automatically converts data when needed.

Audio Data Inputs
The NCDaudio service provides several sources of sound data:

❏ Physical Devices – Microphones, CD Players, and other
types of audio devices can be plugged into the input jacks
of the terminal or PC.

❏ Virtual Devices – The audio server itself provides software
that emulates hardware tone generators and radio trans-
mitters and receivers (for data that is broadcast over a local
area network).

❏ Client Data – Applications can transmit sound data over
the network to the server.

❏ Buckets – Audio data can be stored in the server, either as a
result of being recorded from another device or having
been sent over the network from the application.

Applications can hook up one or more inputs to one or more
outputs. Operations such as mixing sounds, extracting individual
tracks of data, and changing the volume are provided. The server
routes the data to the appropriate devices automatically.

NCDaudio

Overview-4

March 13, 1993

Audio Data Outputs
The NCDaudio service provides several destinations for sound data:

❏ Physical Devices – Speakers, tape recorders, and other
types of audio device can be plugged into the output jacks
of the terminal or PC.

❏ Client Data– Sound data can be sent over the network to an
application. This provides the ability to use the X terminal
or PC to record sound.

❏ Buckets – Sound data can be stored in server memory so
that it can later be replayed, sent to the client, or copied to
another bucket.

Outputs can receive data from more than one input at once; the
server automatically handles mixing the data streams.

How Data Gets From Inputs to Outputs
The instructions that a client provides for arranging various inputs
and outputs are called Flows (see Figure 3). They are used in much
the same way as musicians use audio mixers or patch-panels. They
indicate how the components should be connected, how multiple
sounds should be mixed, and what changes in volume should be
made.

A flow is made up of a series of elements which describe sources of
input data, operations to perform on data, and places to output the
data. Sound data is imported into a flow from various input ele-
ments, and is exported to one or more output elements. A flow is
often represented graphically as a tree whose leaf nodes are import
and export elements and whose interior nodes are mathematical or
logical operations.

Figure 3: Flows Connect Inputs to Outputs

* 0.5

* 0.5

+

Speaker

Client

Microphone

 Overview-5

NCDaudio March 13, 1993

The import and export elements used in a flow are referred to as the
components of the flow. Data moves along a flow at the highest
sample rate used by its components. The server automatically con-
verts data to this sample rate when necessary.

At each step, the components in the flow are said to be in one of three
states, depending upon whether or not they are producing or con-
suming any real data:

❏ Stopped – An input element in this state has no real data
ready and simply emits values of zero. An output element
in this state discards any data that is directed to it.

❏ Paused – When an input element temporarily runs out of
data or an output element has reached its limit, it becomes
Paused. This is similar to being Stopped, except that the
component expects that it can resume where it left off when
more data or space becomes available.

❏ Started – When input and elements are producing or con-
suming data, respectively, they are said to be started.

When a flow is created, the components are initially placed in the
Stopped state, preventing any data from flowing. Once at least one
component in the flow has been started, data can begin to move.
Components may change state in several different ways:

❏ The application can explicitly set the state of each element.

❏ An element in the flow can set the state of itself or other ele-
ments in response to changes in its own state.

❏ If an input temporarily runs out of data, it becomes Paused.

❏ In an input permanently runs out of data, it becomes
Stopped.

By default, all components in a flow will automatically be stopped if
any of the elements in the flow become Stopped or Paused (and have
not reset themselves).

Performing Actions When Components Change
The ability to force input and output elements to trigger automatic
actions in response to other elements allows the server to react
immediately to changes that might cause pops and hisses. Each com-
ponent element in a flow may have associated with it a list of actions
to be performed when the element goes into a particular state:

❏ Change Element State – The state of any element (including
the one triggering the change) can be explicitly set.

❏ Notify Client – An event detailing the current state of the
element can be sent to the client that created the flow con-
taining the triggering element.

NCDaudio

Overview-6

March 13, 1993

Actions are often used when an input runs out of data to instruct
another input start in its place (chaining the two inputs together) or
to restart the input (looping). Applications also use Stopped notices
to know when a flow is finished and can be destroyed. The default
action for components entering the Stopped or Paused states is to
stop or pause, respectively, all of the other components in the flow.

Manipulating Audio Data
One of the key features provided by the NCDaudio service is the
ability to manipulate multiple sources of and destinations for sound
data without client interaction. Conveniently, simple mathematical
operations on the sample values (such as those shown in Figure 3)
provide useful physical results:

❏ Adding two sets of samples together is equivalent to
playing them at the same time.

❏ Multiplying a set of samples by a value greater than 1.0
increases the volume of the sound; a value less than 1.0
decreases the volume.

Most audio applications provide dynamic ways of changing the
volume of the data being played. To support this, elements, such as
the one used to multiply data by a constant, can optionally have
parameters that can be changed at any time. The other information in
a flow cannot be changed, except by redefining all of the elements in
the flow.

Sound data comes from inputs in the range of -1.0 to +1.0 (even if it is
stored differently). Within a flow, values may temporarily exceed this
range, but are clipped back down when sent to outputs. Applications
can send and retrieve data in a variety of formats; any conversion is
handled automatically by the server.

Output devices that are attached to the server are shared among the
various applications. When two or more flows direct sound data to
the same output, the server automatically averages the data streams
together. The result is that both sounds come out at the same time.

When the various components in an flow contain data of differing
sample rates, the server internally converts all of the data streams to
the highest rate. If this results in more samples for an output than it
expected, the server automatically throws away any unneeded
values.

Mono And Stereo
In addition to supporting simple monoaural data (such as voice
annotations), the NCDaudio service also provides the ability to
manipulate multitrack data such as stereo recordings. Applications
can extract tracks from sound data and mix multiple tracks together.

 Overview-7

NCDaudio March 13, 1993

Some types of multitrack output devices (especially stereo speakers)
can be represented as collections of single-track devices that applica-
tions may also wish to access separately. Figure 4 shows an example
in which stereo data from two separate clients (A and B) is sent to a
stereo speaker which in turn uses two mono speakers. A third client
(C) is sending mono data directly to the right speaker.

In this situation, the two sets of stereo data are mixed as if the stereo
speaker were a physical device. The individual tracks are then sent to
the mono speakers, where the data for the right track is mixed with
the data coming from Client C.

Most importantly, however, the volume levels of the left and right
track of the data coming from the stereo speaker are automatically
synchronized. If the right track is reduced as part of the mixing with
the microphone data then the left track is reduced to match. This
insures that the two tracks are played at equal levels.

By providing access to the separate mono speakers as well as the
joint stereo speaker, the NCDaudio service gives applications fine-
grained control over how sound is produced.

For convenience, however, most implementations provide at least
one mono and one stereo speaker, even if they have to be simulated
in software when appropriate hardware is not available.

Figure 4: Stereo and Mono Outputs

Speaker

Right

Left
Speaker

Speaker

CD

Client

Microphone

Client A

Client B

Client C

NCDaudio

Overview-8

March 13, 1993

Sending Data Over The Network
Although the NCDaudio service provides a number of input devices
and built-in sound generators, its primary purpose is to allow appli-
cations to play and record audio data over the network.

Clients send data to a special type of import element in a flow. Data
from this element is used in the flow just as if it were coming from
any other input device. If a sound is to be used more than once, the
application can store it in the server by creating a bucket object and
exporting the data to it instead of to an output device.

This process can be reversed to retrieve audio data from the server.
Large amounts of data can be passed back to the application directly
from the various input devices without requiring temporary storage
for all of it in the server. Although the most common use of this
mechanism is to record data from microphone, it can be used with all
supported input devices (e.g., buckets, tone generators, or radios).

Figure 5 shows several examples of very simple flows that transfer
data to and from the server. Putting a multiplier immediately before
a speaker output allows the volume of the data to be adjusted
dynamically.

In a client/server architecture, network transfer delays can some-
times make the arrival of data less predictable than if it were coming
from a physical device. This can result in underruns (data not arriv-

Figure 5: Common Uses For Client Data

SpeakerClient

Client
Bucket

* 2

Store To
Bucket

Play To
Speaker

Client

Record From
Microphone

Microphone

 Overview-9

NCDaudio March 13, 1993

ing in time) or overruns (more data arriving than there is room for) if
the delays are sufficiently large.

The NCDaudio service provides several methods of avoiding these
problems. When an underrun occurs in an input element or an
overrun occurs in an output element, the component enters the
Paused state. Unless a different action is specified by the application,
this causes all other components in the flow to be paused.

Storing Data In The Server
Applications that use certain sounds more than once have the ability
to store the data in the server in objects called buckets. Such data can
then be used repeatedly as input to other flows without have to
transfer it across the network again. This technique is commonly
used in applications that use audible cues to draw the user’s atten-
tion.

Some implementations also provide built-in buckets containing pre-
recorded sounds.

Virtual Input Devices
As a convenience to the application, several types of simulated input
devices are provided by the NCDaudio service. A variety of builtin
wave forms (see Figure 6) can used to generate simple waves. Future
implementations will also provide radio devices that reads from or
writes to the network using a datagram protocol.

Figure 6: Sample Builtin Wave Forms

Sine
Wave

Square
Wave

Saw
Wave

Constant

NCDaudio

Overview-10

March 13, 1993

Summary
The NCDaudio service provides a mechanism for transferring audio
data between applications and the desktop X terminal or PC. Appli-
cations specify how various inputs and outputs should be hooked
together; the server automatically routes data to the proper destina-
tion and does any necessary conversions.

Sounds may be stored in the server and reused multiple times or can
be sent directly to attached output devices such as speakers. Applica-
tions may dynamically adjust the volume at which the sounds are
heard.

 Input devices such as microphones can be used to record audio data.
Applications can read the data back over the network, store the
results in the server for later use, or even redirect it to an output
device.

