
Summary of Algorithms used by PlanetarySystemStacker (PSS Version 0.8.22)

This document is an algorithmic guide through the open-source software “PlanetarySystemStacker”. It explains all the steps performed in stacking a video file

or batch of single images. For every step it lists the data structures and configuration parameters (cursive) involved in the operation and states where in the

code the step is performed.

Description of algorithmic step Data strcuture(s) and configuration
parameters involved

Module.Class.Method or
Module.Function
in Python source code

GUI control

PlanetarySystemStacker comes with a GUI using the QT5 widget
toolkit. The GUI is started with the main program in module
“planetary_system_stacker.py”.

The GUI starts a separate “workflow” thread which does all
computations, especially those in batch mode.

Individual processing phases of the workflow are triggered by
the GUI using QT signals associated with slots in the Workflow
object. The signals are emitted in method “work_next_task”.

The processing steps are the same as described below for the
version using a main program without GUI. That version is
mostly used for debugging purposes. The processing details,
therefore, in the following are described for the main program
case only.

 planetary_system_stacker.

__main__

planetary_system_stacker.

PlanetarySystemStacker.init

workflow.Workflow

planetary_system_stacker.

PlanetarySystemStacker.

work_next_task

Main control program (for debugging)

All parameters controlling the program are set in the
configuration object. Eventually these values are to be set by the
GUI and maintained between executions in a configuration file.

 configuration.Configuration

Set the names of files to process. This can either be the names
of video files (type .avi / .ser / .mov) or names of directories
containing image files (type .png /.tiff / .fits). In the latter case
all files of one directory are taken as input for a single stacking
operation. If those images differ in shape, an error is raised.

If multiple video files or multiple directories are specified,
multiple stacking operations are performed in batch mode in
succession.

The workflow for the entire stacking process for a video file or
image directory is controlled by the “workflow” function.

input_names

input_type = “video” or “image”

main_program.__main__

main_program.workflow

Optional: Select a “region of interest” (ROI) in the form (y_low,
y_high, x_low, x_high). If set to “None”, the full frames are used

roi main_program.__main__

Optional: Select that input images should be converted to
grayscale before processing. If set to “None”, color images are
processed as three-channel RGB.

convert_to_grayscale = True or

False

main_program.__main__

For performance measurements, code sections can be timed. If
the same section is executed several times, counters can be
incremented. A timer object is created at start of execution.
Individual counters can be added later. In the end, a table with
the accumulated times of all counters can be printed.

my_timer timer.timer

Read frames and create derived images

PlanetarySystemStacker provides several buffering levels of data
which are used more than once during a stacking job. For level 0,
no data are buffered. Images are read from the input file when
needed, and derived versions are re-computed. For level 4,
frames are read only once, and all derived image versions are
kept in memory.

The program uses four versions of the image data:

- The original image data, either read from a single .avi
file, or from a directory with image files. The shape of a
single frame is (pixels in y, pixels in x [, 3 in case of
color]).

- 2D monochrome image (if the original frames were
monochrome, this is just a pointer to the original frame)

- “Blurred” version of the monochrome image. It is
computed by applying a Gaussian filter to the
monochrome image. The width of the Gaussian is an
input parameter.

- Laplacian of the Gaussian

Access to the four image versions is via methods of class
“Frame”. Depending on whether the data are buffered or not, a
pointer to the object in memory is returned, or the image is read
from the input file and/or computed by applying the appropriate
filter.

The blurred image versions are used later in shift computations.
This helps avoiding spurious local minima caused by pixel noise.

The Laplacians are used for ranking image quality. This happens

parameter:
global_parameters_buffering_

level

frames_original

frames_monochrome

frames_monochrome_blurred

frames_monochrome_blurred_

laplacian

parameter: frames_gauss_width

frames.Frames.init

frames.Frames.frames

frames.Frames.frames_mono

frames.Frames.frames_mono_

blurred

frames.Frames.frames_mono_

blurred_laplacian

in two locations: First in ranking the overall frame quality for
constructing the mean frame, and then when the frame quality
in local areas around alignment points is computed in the
stacking process.

Global frame ranking

Next all frames are ordered by their overall image quality. This is
done by computing the amount of structure in the (“blurred”
monochrome) images. Three methods can be selected for
ranking, using one of the following expressions (greater value is
better) on the local luminance 𝑙𝑗,𝑖:

- “xy gradient”: ∑ (𝑙𝑗+1,𝑖 − 𝑙𝑗,𝑖)2
𝑛𝑝𝑖𝑥𝑒𝑙𝑠−1

𝑗,𝑖=0
+ (𝑙𝑗,𝑖+1 − 𝑙𝑗,𝑖)2

-
“Laplace”: 𝑉𝑎𝑟 (∆ 𝑙𝑗,𝑖)

-

“Sobel”: ∑ √(𝐺𝑥𝑗,𝑖
)2 + (𝐺𝑦𝑗,𝑖

)2

𝑛𝑝𝑖𝑥𝑒𝑙𝑠−1

𝑗,𝑖=0

 with 𝐺𝑥 and 𝐺𝑦 being the horizontal /

 vertical Sobel operators.

The values are normalized, so that the value for the best frame
is 1.0. The index of the frame with the highest rank is computed.
This frame is used as the reference for the computation of global
frame shifts.

A stride value can be specified. If set to a value > 1, the images
are down-sampled by this value before computing the score. In
typical video files setting a value of 2 usually gives a good
ranking and saves compute time.

frame_ranks

frame_ranks_max_index

parameters:

rank_frames_method

rank_frames_pixel_stride

rank_frames.RankFrames.

frame_score

methods:

- local_contrast

- local_contrast_laplace

- local_contrast_sobel

in class

miscellaneous.Miscellaneous

Usually the method “Laplace” is to be preferred. This is also the
method used by the GUI version of PSS.

Global frame alignment

Next all frames are aligned with each other. The frame with the
highest rank is used as reference (see above). Two alignment
modes are available: “Surface” and “Planet”.

- “Surface”: First find a rectangular patch with good
structure as “alignment window”. The size of the patch
is a fraction of the frame size, the scale factor being a
configuration parameter. By setting a parameter
“align_frames_border_width” the window can be kept
away from the frame borders. This way, the window
does not have to be moved as often when the object is
drifting between frames.

For all potential alignment patches in the frame the
merit function

 min(∑ 𝑎𝑏𝑠 (
𝑙𝑗+1,𝑖− 𝑙𝑗−1,𝑖

𝑙𝑗,𝑖
)

𝑛𝑝𝑖𝑥𝑒𝑙𝑠−1

𝑗,𝑖=1, 𝑙𝑗,𝑖>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

,

 ∑ 𝑎𝑏𝑠(
𝑙𝑗,𝑖+1− 𝑙𝑗,𝑖−1

𝑙𝑗,𝑖
)

𝑛𝑝𝑖𝑥𝑒𝑙𝑠−1

𝑗,𝑖=1, 𝑙𝑗,𝑖>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)

is executed. This way the patch is found where good
vertical and horizontal structures are present. In order
to ignore contributions by noise in dark areas, a
brightness threshold is included.

An ordered list of alignment patches with decreasing

Parameters:

align_frames_mode

align_frames_rectangle_

scale_factor

align_frames_rectangle_

black_threshold

align_frames_search_width

align_frames_border_width

align_frames_sampling_stride

align_frames_

average_frame_percent

alignment_rect_qualities

miscellaneous.Miscellaneous.

quality_measure_alternative

align_frames.AlignFrames.

∑ 𝑙𝑓𝑟𝑎𝑚𝑒𝑗+𝑠𝑦,𝑖+𝑠𝑥
∗ 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

√∑ 𝑙𝑓𝑟𝑎𝑚𝑒𝑗+𝑠𝑦,𝑖+𝑠𝑥

2 ∗ ∑ 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

2𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

merit function is computed. Frame alignment (see
below) is tried using the patch with the highest score. If
it fails for some frame, the process is repeated using the
next patch, and so on, until the alignment succeeds for
all frames or there are no patches left.

Next all frames are compared with the reference frame
at this patch, and the relative shift is computed. Four
methods are available for this search:

- “Translation” (not recommended): Phase-correlation

- “MultiLevelCorrelation” (very stable and relatively fast,
used by the GUI version of PSS since V0.7.0): The
normalized cross correlation between the shifted
alignment window in the current frame and the
reference frame window is maximized in a two-level
approach:
In the first phase, on a pixel grid around with stride 2 in
both y and x with shifts [𝑠𝑦, 𝑠𝑥] around the zero shift,

with
abs(𝑠𝑦) ≤ (align_frames_search_width – 4) / 2, and

abs(𝑠𝑥) ≤ (align_frames_search_width – 4) / 2
the following expression is maximized:

In the second phase, the expression is evaluated on the
original (fine) pixel grid around the optimal shift point of
the first phase, this time with a search radius of 4. The

frame_shifts

Parameter:

align_frames_search_width

compute_alignment_rect

align_frames.AlignFrames.

select_alignment_rect

align_frames.

AlignFrames.align_frames

miscellaneous.Miscellaneous.

translation

miscellaneous.Miscellaneous.

multilevel_correlation

∑ 𝑎𝑏𝑠(𝑙𝑓𝑟𝑎𝑚𝑒𝑗,𝑖
− 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

)

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒

𝑗,𝑖=0

∑ 𝑎𝑏𝑠(𝑙𝑓𝑟𝑎𝑚𝑒𝑗,𝑖
− 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

)

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒

𝑗,𝑖=0

result of the second phase is accepted if in both phases
the optimum was not attained on the border of the
search area. Otherwise, the result is set to [0, 0] (zero
shift), and the result is marked “unsuccessful”.

- “RadialSearch” (stable but expensive): Search all
positions for a local minimum of the expression

spiraling out from zero shift.

- “SteepestDescent” (used exclusively by the GUI version
up to V0.6.0): Same as “RadialSearch”, but not all
positions around zero shift are evaluated, but only those
in the direction of the steepest descent of the
evaluation function. More precisely:
Starting with shift values [dy_min, dx_min] = [0, 0], the
shifted alignment window in the current frame is
compared with the reference frame window. For every
search position, the match quality is computed with

The goal is to minimize this expression. A “sampling
stride” parameter can be selected. In this case the
summation indices are incremented using this stride (to
save compute time).

miscellaneous.Miscellaneous.

search_local_match

miscellaneous.Miscellaneous.

search_local_match_gradient

First, for all positions with distance 1 in y or x the match
quality is computed. If the minimal value is smaller than
the best value so far, the corresponding position is taken
as a new start point.

For this new start point, again all positions with distance
1 are tested in search for a better minimum. The search
ends when no improvement is found, or the maximum
search width (parameter) is reached. In the latter case,
the search is regarded as unsuccessful.

Consecutive frames tend to have similar shifts.
Therefore, the optimum found for one frame is taken as
start value for the next one. The current shift is kept in
the cumulative shifts [dy_min_cum, dx_min_cum].

All frame shifts are measured relative to the reference
frame. To make it easier for the search algorithm
described above, the computation starts for the frame
captured just before the reference frame, and going
backwards until the first frame is reached. In a second
loop, the remaining frames are treated starting with the
frame just after the reference frame and going to the
end of the video. This way, the search always starts with
a good approximation.

If the object drift is too large, the alignment window can
hit the frame border. Before that happens, the window
is shifted by half the border width away from the
border.

- “Planet”: Only applicable if the object is surrounded by
black space in all directions. In this case alignment is

[dy_min_cum, dx_min_cum]

much easier. For each frame the “center of gravity” of
the brightness distribution is computed. The differences
in y and x give the relative shift.

After aligning all frames, the pixel bounds of the intersection of
all frames are computed: intersection_shape[y, x][low, high]

intersection_shape

Mean frame computation

Next, the average frame is computed by averaging the best
frames, taking into account their relative global shifts. At this
point no local warp effects can be corrected for. The percentage
of the total number of frames is chosen via a parameter.

From now on, pixel indexing of new image objects uses the
shape of the average frame, given by the index bounds in the
structure “intersection_shape”. The original frames, however,
are not copied, so they keep their original indexing. The global
shifts between the image frames and the new reduced-size
images are stored in lists “dy” and “dx” in the “align_frames”
object.

average_frame

Parameter:

align_frames_average_frame_

percent

dy / dx

align_frames.AlignFrames.

average_frame

If a “region of interest” was selected, the intersection is reduced
to this size and position in the frame. A new mean frame is
computed with the new intersection shape.

 align_frames.AlignFrames.

set_roi

Alignment point creation

Next, the alignment points (APs) for the “multi-point alignment”
are defined. The methods are contained in class
“alignment_points”. All alignment points are organized in a
linear list. Each entry is a dictionary containing all information on
a single point. The main variables in that dictionary are:

- y, x pixel coordinates of center
- Lower and upper index bounds in y and x of the so-

called “alignment box”. This is the area used for
measuring the local (warp) shift against the mean frame.

- Lower and upper index bounds in y and x of the so-
called “alignment patch”. The patch is somewhat larger
than the box. It is the area used for stacking around this
AP.

- The “reference box” with the section of the average
frame at the location of the alignment box. If
“MultiLevelCorrelation” is used for measuring the warp
shifts, two reference boxes (“reference box first phase”
with stride 2, and “reference box second phase” with
stride 1) are created. They both cover the same area of
the frame.

- The stacking buffer where frame contributions are
accumulated during stacking for this alignment patch.

Usually, first a grid of alignment points is created automatically,
using the method “create_ap_grid”. The AP distance in y and x is
specified with the “step_size” parameter. Additional points can
be added or removed individually (“new_alignment_point”,
“remove_alignment_points”). The following example shows the
result of an automatic AP creation. The picture is created by
method “show_alignment_points”. Red crosses show the (real)
alignment points. White and green quadrats are the alignment
boxes and patches around the APs, respectively.

alignment_points

Parameters:

alignment_points_half_box_

width

alignment_points_half_patch_

width

alignment_points_step_size

alignment_points.

AlignmentPoints.
create_ap_grid

alignment_points.

AlignmentPoints.

new_alignment_point

alignment_points.

The automatic AP creation produces a staggered grid of points.
In rows where the first and last points are farther away from the
frame boundary, alignment patches are extended up to the
frame boundary (in order to avoid holes).

In AP grid creation, APs are put on the AP list only if they satisfy
several conditions:

- The alignment box must contain pixels brighter or equal
to a given threshold (brightness condition).

- The difference between the brightest and dimmest
pixels in the alignment box must be greater or equal to a
second threshold (contrast condition).

- A “structure” value representing the amount of local
structure in the alignment box must exceed a third
threshold (structure threshold). The values are
normalized such that it is 1. for the AP with maximum
structure.

alignment_points_brightness_

threshold

alignment_points_contrast_

threshold

alignment_points_structure_

threshold

AlignmentPoints.

remove_alignment_points

alignment_points.

AlignmentPoints.

find_alignment_points

alignment_points.

AlignmentPoints.

find_neighbor

alignment_points.

AlignmentPoints.

show_alignment_points

Special attention is given to APs in dark areas close to the moon
or planet. If the AP satisfies the structure and brightness
condition, the object must fill at least part of the alignment box.
To find APs where this part is too small, the fraction of pixels
brighter than the brightness threshold is computed. If it is
smaller than parameter “dim_fraction_threshold”, the AP is
moved towards the object. To this end, the “center of gravity” of
the bright pixels inside the alignment box is computed, and the
AP center is moved to this point.

Parameter:

alignment_points_dim_fraction_

threshold

𝑠𝑦 =
∑ 𝑎𝑏𝑠(𝑙𝑗+1,𝑖 − 𝑙𝑗−1,𝑖)𝑏𝑜𝑥_𝑠𝑖𝑧𝑒−1

𝑗,𝑖=0
#𝑝𝑖𝑥𝑒𝑙𝑠

⁄

𝑠𝑥 =
∑ 𝑎𝑏𝑠(𝑙𝑗,𝑖+1 − 𝑙𝑗,𝑖)𝑏𝑜𝑥_𝑠𝑖𝑧𝑒−1

𝑗,𝑖=0
#𝑝𝑖𝑥𝑒𝑙𝑠

⁄

Finally, for each AP the amount of structure in the AP box is
computed using the expression

𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 = min (𝑠𝑦 , 𝑠𝑥)

If the sharpness value is below the given threshold, the
alignment point is added to the list of failed APs.

Parameter:

alignment_points_structure_

threshold

miscellaneous.Miscellaneous.

quality_measure

Ranking frames at alignment points

After all APs have been set, for each frame and each AP the
image quality is computed, based on the alignment box around
the AP. This is a very compute intensive operation. For
computing the local frame qualities, as above three methods can

alignment_point[

‘frame_qualities’]

alignment_point[

‘best_frame_indices’]

alignment_points.

AlignmentPoints.

compute_frame_qualities

be chosen from (by selecting the “rank_method” parameter:

- “xy gradient”
- “Laplace”
- “Sobel”

For their definition, see above. The recommended choice is
“Laplace”. It is used by the GUI version of PSS.

As with frame ranking, a stride parameter can be set for down-
sampling. If the “Laplace” method had been chosen to rank the
frames, and now again “Laplace” is chosen for AP ranking,
sampled-down Laplacians were stored for re-use. In this case the
parameter “alignment_point_pixel_stride” is ignored, and the
old parameter “rank_frames_pixel_stride” is re-used instead
(because the Laplacians were computed with this stride).

The qualities are stored for all frames in a list. The list is stored in
the AP dictionary as “alignment_point[‘frame_qualities’]. A list
of the best frame indices (up to the specified percentage of
frames to be stacked) is computed and stored in the AP
dictionary as “alignment_point[‘best_frame_indices’]. Note that
these lists in general are different at different APs because of
local seeing.

To make the association of APs and best frames also accessible
from the frame side, the APs are appended to the list of “used
alignment points” of their corresponding frame objects. These
lists are used in stacking below.

Parameters:

alignment_points_rank_

method

alignment_points_pixel_stride

alignment_points_frame_

percent

frames.used_alignment_points

Frame stacking

ℎ𝑝𝑤 =
𝑦ℎ𝑖𝑔ℎ − 𝑦𝑙𝑜𝑤

2

In preparation of frame stacking, method
“prepare_for_stack_blending” is executed. It computes all
auxiliary arrays and variables, so that in the remaining
computations each video frame has to be loaded only once.

First, for every AP an array with the size of the AP patch is
computed. It is filled with “weights” between 0 and 1. Weights
are 0 outside the patch rim and increase linearly to 1 at the AP
center [𝑗𝐴𝑃𝑐 , 𝑖𝐴𝑃𝑐]. More precisely, for point [𝑗, 𝑖] with

𝑦𝑙𝑜𝑤 ≤ 𝑗 < 𝑦ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝑥𝑙𝑜𝑤 ≤ 𝑖 < 𝑥ℎ𝑖𝑔ℎ:

𝑤𝑒𝑖𝑔ℎ𝑡𝑗 = {

𝑗− 𝑦𝑙𝑜𝑤+1

ℎ𝑝𝑤+1
 𝑓𝑜𝑟 𝑦𝑙𝑜𝑤 ≤ 𝑗 < 𝑗𝐴𝑃𝑐

𝑦ℎ𝑖𝑔ℎ− 𝑗

ℎ𝑝𝑤
 𝑓𝑜𝑟 𝑗𝐴𝑃𝑐 ≤ 𝑗 < 𝑦ℎ𝑖𝑔ℎ

𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = {

𝑖− 𝑥𝑙𝑜𝑤+1

ℎ𝑝𝑤+1
 𝑓𝑜𝑟 𝑥𝑙𝑜𝑤 ≤ 𝑖 < 𝑖𝐴𝑃𝑐

𝑥ℎ𝑖𝑔ℎ− 𝑖

ℎ𝑝𝑤
 𝑓𝑜𝑟 𝑖𝐴𝑃𝑐 ≤ 𝑖 < 𝑥ℎ𝑖𝑔ℎ

𝑤𝑒𝑖𝑔ℎ𝑡𝑗,𝑖 = min (𝑤𝑒𝑖𝑔ℎ𝑡𝑗, 𝑤𝑒𝑖𝑔ℎ𝑡𝑖)

The weights for all points within the AP patch are stored with
the AP at “alignment_point['weights_yx']”. In both coordinate
directions the weights ramp up linearly from a small value on
the lower patch boundary to 1 at the patch center, and from
there ramp down again to a small value on the upper patch
boundary.

The helper function “one_dim_weight” computes the ramping

stack_frames.number_single_

frame_contributions

alignment_point['weights_yx']

stack_frames.

prepare_for_stack_blending

stack_frames.StackFrames.

one_dim_weight

stack_frames.one_dim_weight

from zero to one and back to zero across a 1D line through the
patch. Array “sum_single_frame_weights” accumulates the
contributions from all APs. This array is used later for buffer
normalization.

If for every pixel in the frame there is at least one AP patch with
a nonzero contribution, the whole frame is covered with APs
and no additional background frame is required. To find out if
this is the case, “number_stacking_holes” is computed as the
total number of pixels where the accumulated weights are
below a very small value (10−10).

If “number_stacking_holes” is zero, no background image is
needed in stacking. In this case everything is set for stacking.

If it is greater than zero, the stacked image contains holes, so it
has to be blended with a background image. The background is
computed as the average of the best frames. Only global shifts
are applied, no warping. This image must be blended gradually
with the stacked image.

First the number of points where the background image is
needed is computed. Because the background is to be blended
gradually with the AP patches, this number is greater than the
number of points where the accumulated patch weights are
zero. More specifically, “points_where_background_used” is the
number of points where the accumulated weights are greater
than “stack_frames_background_blend_threshold”.

If the fraction of the points where the background is required, as
compared to the total number of pixels, is above the threshold
“stack_frames_background_fraction”, it is decided to compute a
full background image. If not, the entire frame is subdivided into
rectangular patches, and for each patch the background is

sum_single_frame_weights

number_stacking_holes,

points_where_background_used

backgroune_patches

Parameters:

stack_frames_background_blend_

computed if the patch contains pixels where the background is
required. In this case, a list “backgroune_patches” of
dictionaries is constructed. For each patch where the
background image is to be computed during stacking, it specifies
the bounds in y and x.

threshold

stack_frames_background_

fraction

Frame stacking proceeds in a loop over all frames. For each
frame there is a loop over all alignment points for which it was
decided before that this frame is to be used (see “Rank frames
at alignment points”).

Frames.used_alignment_points

stack_frames.

StackFrames.stack_frames

First, the local shift of the frame at the AP is computed relative
to the mean frame. Similar as with the computation of global
frame shifts, four methods can be chosen from (see Section
“Global frame alignment” for details):

- “MultiLevelCorrelation”
- “Subpixel”
- “CrossCorrelation”
- “RadialSearch”
- “SteepestDescent

The recommended version, i.e. the one used exclusively by the
GUI version since V0.7.0, is “MultiLevelCorrelation”. It is most
stable, reasonably fast and reliable. It works similarly as
described in section “Global Frame Alignment” above. The only
difference is that the expression which is maximized in the first
phase (on the coarse pixel grid with stride 2) this time includes
an additional penalty term

𝑝(𝑠𝑦 , 𝑠𝑥) = 1 − 𝑓 ∗ ((
𝑠𝑦

𝑠𝑤𝑓
− 1)2 + (

𝑠𝑥

𝑠𝑤𝑓
− 1)2))

with

Parameter:

alignment_points_method

Parameters:

alignment_points.

AlignmentPoints.

compute_shift_alignment_point

𝑝(𝑠𝑦, 𝑠𝑥) ∗ ∑ 𝑙𝑓𝑟𝑎𝑚𝑒𝑗+𝑠𝑦,𝑖+𝑠𝑥
∗ 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

√∑ 𝑙𝑓𝑟𝑎𝑚𝑒𝑗+𝑠𝑦,𝑖+𝑠𝑥

2 ∗ ∑ 𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗,𝑖

2𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑗,𝑖=0

𝑓 = alignment_points_penalty_factor and

𝑠𝑤𝑓 = (alignment_points_search_width – 4) / 2

With this additional term, the expression maximized in the first
phase is:

In the second phase no penalty term is applied, so the
expression to be maximized is the same as in section “Global
Frame Alignment”.

As in Section “global frame alignment”, when using the methods
“RadialSearch” or “SteepestDescent”, a parameter
“sampling_stride” can be set > 1 to speed up the process. In this
case the optimal position of the local shift is still determined
with 1 pixel accuracy, but the summation in the merit function
only includes a coarser subset of pixels. A good match should
still lead to a minimum of the merit function at the right place, in
particular since the merit function is evaluated on the blurred
monochrome images.

alignment_points_penalty_

factor

alignment_points_search_width

Parameter:

alignment_points_sampling_

stride

Next, the total shift at the AP is computed as the sum of the
global frame shift and the local warp shift “[shift_y, shift_x]”.
Using these shift values, function “remap_rigid” shifts the AP
patch around the AP in the current frame and adds it to the AP’s
stacking buffer. Here for the first time the original (color) frames
are used, and not the blurred monochrome versions which had

[shift_y, shift_x]

[total_shift_y, total_shift_x]

alignment_point[

‘stacking buffer’]

stack_frames.

StackFrames.remap_rigid

been the basis for all quality analyses and shift computations.

Within the same loop over all frames, the (partial) background
image is computed. Therefore, each frame has to be loaded only
once.

averaged_background

Merging alignment patches

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑_𝑖𝑚𝑎𝑔𝑒 =
𝑠𝑡𝑎𝑐𝑘𝑒𝑑_𝑖𝑚𝑎𝑔𝑒_𝑏𝑢𝑓𝑓𝑒𝑟

𝑠𝑢𝑚_𝑠𝑖𝑛𝑔𝑙𝑒_𝑓𝑟𝑎𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠

So far stacking was performed locally on the AP patches. Now
those patches are blended into the global
“stacked_image_buffer”. This is done by method
“merge_alignment_point_buffers”.

It is crucial at this step to avoid sharp transitions between
patches. After all, they have been rigidly shifted, most likely
using different shift values. Therefore, overlapping patches must
be blended with each other. The difficulty is, however, that the
program so far has no notion of AP neighborhood. This problem
is solved by multiplying the AP patches with weight functions
which smoothly go to zero on the patch rim.

First, the “foreground image”, i.e. the image in pixels covered by
at least one AP, is computed by dividing the
“stacked_image_buffer” by the accumulated AP patch weights
given by “sum_single_frame_weights”. Since the latter array was
initialized with 1.E-30, there is no divide by zero in holes
between AP patches.

This “foreground_image” has the correct brightness within AP
patches. If the whole image is covered with APs, the stacking is

stacked_image_buffer

Alignment_point[‘weights_yx’]

sum_single_frame_weights

stack_frames.StackFrames.

merge_alignment_point_buffers

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 = min (1,
 ssfw

𝑏𝑡
) 𝑤𝑖𝑡ℎ

𝑠𝑠𝑓𝑤 = 𝑠𝑢𝑚_𝑠𝑖𝑛𝑔𝑙𝑒_𝑓𝑟𝑎𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠
𝑏𝑡 = 𝑠𝑡𝑎𝑐𝑘_𝑓𝑟𝑎𝑚𝑒𝑠_𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑏𝑙𝑒𝑛𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑓𝑤 = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑_𝑤𝑒𝑖𝑔ℎ𝑡
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑_𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

completed at this point. Otherwise, the “foreground_image” is
blended with the background in the next step.

As a preparation of this blending process, the mask
“foreground_weight” is computed as:

Using “foreground_weight” as a mask, the foreground and
background images are blended with each other into the final
result:

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓𝑤 ∗ 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑_𝑖𝑚𝑎𝑔𝑒 + (1 − 𝑓𝑤) ∗
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

with:

In a final step, the image buffer “result” is converted from a
32bit floating point representation into 16bit unsigned int.

Parameter:

stack_frames_background_blend_

threshold

stacked_image

Saving the final image

Finally, the “stacked_image” is written to a file. At this point
16bit PNG, Tiff and FITS formats are supported.

 frames.Frames.save_image

Postprocessing (Sharpening)

PSS includes the option to postprocess the stacked image as the
last step of the workflow. As an alternative, this step can be
invoked directly for a given TIFF, PNG, or FITS image. All
computations are performed in 32bit float arithmetic.

Postprocessing is done in two steps:

- RGB channel alignment (either automatic or manual)
- Sharpening / denoising (wavelets)

Input to the RGB channel alignment is the “image_original”, i.e.
the summation image from stacking. Channel alignment can be
done either with 1 pixel resolution, or with sub-pixel resolution
(0.5 or 0.25 pixel). If sub-pixel resolution is selected, the original
image is enlarged first, using bicubic interpolation, to twice or
four times the original image scale.

Automatic alignment first aligns the red, and then the blue
channel with respect to the green channel. The best match is
determined using the same “MultiLevelCorrelation” algorithm as
in the “Global frame alignment” step in stacking (see above).
The entire frame is taken as the alignment window. For very
large input images (DSLR images) this is a heavyweight
computation, especially if sub-pixel resolution is selected. If RAM
is not sufficient to store the interpolated images, sub-pixel
resolution is restricted automatically to a level where they fit.

As an alternative (or subsequent correction step) to automatic
alignment, manual adjustments are possible, again in 1, 0.5, or
0.25 pixel steps. Implementation is complicated, because the
GUI response would be extremely slow if after each correction
step the whole sharpening pipeline had to be processed.
Therefore, in “shift_image mode” the current postprocessed

image_original

input_image

postproc_version.

images_uncorrected

postproc_editor.

ImageProcessor.

recompute_selected_version

miscellaneous.Miscellaneous.

auto_rgb_align

miscellaneous.Miscellaneous.

measure_rgb_shift

miscellaneous.Miscellaneous.

shift_colors

𝑙𝑎𝑦𝑒𝑟_𝑔𝑎𝑢𝑠𝑠𝑖 = 𝐺𝑖(𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖))

𝑙𝑎𝑦𝑒𝑟_𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖 = 𝐵𝑖(𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖))

𝑙𝑎𝑦𝑒𝑟_𝑤𝑖𝑡ℎ_𝑛𝑜𝑖𝑠𝑒𝑖 = 𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖 − 𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖+1

𝑙𝑎𝑦𝑒𝑟_𝑑𝑛𝑖 = 𝑑𝑛𝑖 ∗ 𝐺𝑖(𝑙𝑎𝑦𝑒𝑟_𝑤𝑖𝑡ℎ_𝑛𝑜𝑖𝑠𝑒𝑖) + (1 − 𝑑𝑛𝑖)
∗ 𝑙𝑎𝑦𝑒𝑟_𝑤𝑖𝑡ℎ_𝑛𝑜𝑖𝑠𝑒𝑖

image is interpolated appropriately and stored in the
“images_uncorrected” list. If then one of the correction buttons
is pressed, the accumulated correction shifts (“correction_red”
and “correction_blue”) are applied to the “image_uncorrected”.

The result of RGB alignment is stored in “input_image” as input
to the wavelet pipleline. Sharpening / denoising uses a multi-
level unsharp masking algorithm, using both Gaussian and
Bilateral filters:

Starting with a given “input_image”, a chain of up to ten (as
currently set in the configurable module) postprocessing layers
is applied:

𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡0 = input_image

𝑓𝑜𝑟 𝑖 = 0, … , 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 − 1 (with 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 ≤ 10):

using a Gaussian low-pass filter 𝐺𝑖 with “radius” 𝑟𝑎𝑑𝑖𝑢𝑠𝑖,

using a bilateral filter 𝐵𝑖 with “radius” 𝑟𝑎𝑑𝑖𝑢𝑠𝑖 and
“bilateral range” 𝑏𝑖_𝑟𝑎𝑛𝑔𝑒𝑖

𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖+1 = 𝑏𝑖_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 ∗ 𝑙𝑎𝑦𝑒𝑟_𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖 +
(1 − 𝑏𝑖_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖) * 𝑙𝑎𝑦𝑒𝑟_𝑔𝑎𝑢𝑠𝑠𝑖

𝑓𝑖𝑛𝑎𝑙_𝑖𝑚𝑎𝑔𝑒 = 𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖+1 +

∑ 𝑙𝑎𝑦𝑒𝑟_𝑎𝑚𝑜𝑢𝑛𝑡𝑖

𝑛_𝑙𝑎𝑦𝑒𝑟𝑠−1

𝑖=0

∗ 𝑙𝑎𝑦𝑒𝑟_𝑑𝑛𝑖

using the same Gaussian low-pass filter 𝐺𝑖 with “radius”
𝑟𝑎𝑑𝑖𝑢𝑠𝑖 as above, and the de-noise ratio 𝑑𝑛𝑖

With 𝑙𝑎𝑦𝑒𝑟_𝑎𝑚𝑜𝑢𝑛𝑡𝑖 being the strength of the corresponding
wavelet component.

Please note that this algorithm reduces to the one used by
Registax 6 if 𝑏𝑖_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 is set to zero for all layers.

The resulting image “final_image” is converted to 16bit unsigned
integer and written to a file, again using either the 16bit PNG,
TIFF or FITS format.

